Patents by Inventor Mark Y. Wu

Mark Y. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150313041
    Abstract: Disclosed is a graphene dissipation structure including a substrate and a graphene dissipation layer. The substrate has at least two surfaces. One of the surfaces contacts at least one heat source, and another one is not in contact with the heat source and provided with the graphene dissipation layer, which includes surface-modified graphene nanometer sheets, a carrier resin and a filler. The surface-modified graphene nanometer sheets are well dispersed in the carrier resin, and enhanced to contact each other through the filler to form a thermal conductive network. The ratio of the particle size of the filler and the thickness of the graphene nanometer sheets is about 2 to 100. Therefore, the heat absorbed by the substrate from the heat source is transferred to the graphene dissipation layer, and further dissipated to the outside through thermal conduction or radiation, thereby achieving the function of heat dissipation.
    Type: Application
    Filed: January 12, 2015
    Publication date: October 29, 2015
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Jing-Ru Chen, Shu-Ling Hsieh, Kuan-Ting Li
  • Publication number: 20150294752
    Abstract: Disclosed is a graphene masterbatch including a base resin, electrically conductive carbon black, graphene nanoplatelets with modified surface and a dispersant. The modified surface of graphene nanoplatelet is formed by a modifying agent containing a coupling compound so as to possess hydrophobic and hydrophilic functional groups, which help graphene nanoplatelets form chemical bonding with carbon black and the base resin. Since the modified surface makes graphene nanoplatelets evenly dispersed in the base resin, the graphene masterbatch of the present invention is suitably melt blended with a polymer material to form a composite material such that graphene nanoplatelets are evenly dispersed in the polymer material, thereby enhancing junction strength, increasing mechanical properties, and improving anti-oxidation, acid/base resistance, and thermal conductivity.
    Type: Application
    Filed: January 12, 2015
    Publication date: October 15, 2015
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20150240118
    Abstract: A graphene composite coating layer for being coated on the surface of the target object comprises a curable mixed resin more than 97 wt % and a plurality of surface modified nano graphene sheets. The curable mixed resin comprises a curable resin and a curing agent. The curable resin is 10-50 wt % of the curable mixed resin, and the curing agent is 0˜10 wt % of the curable mixed resin. The surface modified graphene sheets with less than 3 wt % of the graphene composite coating layer are evenly spread in the curable mixed resin. The surface of the surface modified nano graphene sheet has some specific functional groups to form effective bonding with the curable mixed resin, thereby improving the compatibility of the surface modified nano graphene sheets and the curable mixed resin, increasing the junction strength, and enhancing the functions like anti-oxidation, acid/base resistance and mechanical strength.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 27, 2015
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Chen-Kai SHUI
  • Publication number: 20150221409
    Abstract: Disclosed is a graphene composite fiber and a method for manufacturing the same. The graphene composite fiber includes a polymer material and graphene sheets which are 1˜10% by weight of the graphene composite fiber, each having a modified layer with first organic functional groups and second organic functional groups for forming chemical bonds with the surface of the graphene sheet and the polymer material, respectively. The polymer material is a thermoplastic polymer for enclosing the graphene sheets. The method includes steps of preparing graphene sheets, modifying the surfaces of the graphene sheets, adding melted polymer material, blending, forming composite raw particles through the granulator, and finally spinning to form the graphene composite fibers. The graphene composite fibers of the present invention are manufactured by simple processes and possess excellent mechanical strength, thermal conductivity and electrical conductivity, thereby replacing commonly used fibers.
    Type: Application
    Filed: June 16, 2014
    Publication date: August 6, 2015
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Jing-Ru CHEN, Shu-Ling HSIEH
  • Patent number: 9056778
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: June 16, 2015
    Assignee: Enerage Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Geng-Wei Lin, Ping-Yun Yeh
  • Publication number: 20150158729
    Abstract: A method for manufacturing nano-graphene sheets, includes: intercalating and oxidizing a graphite material to form a graphite oxide by mixing the graphite material with an intercalation agent and oxidant; contacting the graphite oxide with a heat source to thermally flake the graphite oxide to nano-graphite sheets; suspending the nano-graphite sheets in a liquid medium and applying a mechanical shear force larger than 5,000 psi to mechanically flake the nano-graphite sheets for reducing the lateral size and thickness to form a nano-graphene suspension solution; separating the nano-graphene sheets from the nano-graphene suspension solution and drying the nano-graphene sheets; and finally reducing and heat treating the nano-graphene sheets to lower the oxygen content to less than 3 wt % and decrease the crystal defects.
    Type: Application
    Filed: June 12, 2014
    Publication date: June 11, 2015
    Inventors: Mark Y WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH, Tsung-Han CHEN
  • Publication number: 20150118554
    Abstract: A graphene-containing electrochemical device includes cathode/anode current collectors, cathode/anode active layers and a separator. The cathode/anode active layers are formed on the cathode/anode current collectors, and include a metal foil substrate and a graphene conductive layer. The graphene conductive layer includes several first graphene sheets and the polymer binder used to bind the first graphene sheets. The cathode/anode active layers include several second graphene sheets and cathode/anode active particles. The second graphene sheets and the cathode/anode active particles are bound by the polymer binder and further adhered to the graphene conductive layer. The second graphene sheets are blended among the cathode/anode active particles.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 30, 2015
    Applicant: Enerage Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20150118491
    Abstract: Disclosed are a hollow graphene nanoparticle and a method for manufacturing the same. The hollow graphene nanoparticle is made of graphene sheets stacked together, and has a particle size of 10˜500 nm and a specific surface area greater than 500 m2/g. The method includes the steps of forming graphene, etching and heat treatment. First, a reducing agent is injected into an oven filled with protective gas, a carbon-containing gas compound or a second gas compound decomposing to generate carbon at higher temperature is added, a processing temperature is heated up to perform a redox reaction so as to form graphene nanoparticles containing side products, the graphene nanoparticles is then immersed in the acidic etching solution to remove the side products and obtain the hollow graphene nanoparticles.
    Type: Application
    Filed: January 30, 2014
    Publication date: April 30, 2015
    Applicant: ENERAGE INC.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Cheng-Shu PENG
  • Publication number: 20150064571
    Abstract: A current collector structure includes a metal foil substrate and a graphene conductive layer provided on at least one surface of the metal foil substrate. The graphene conductive layer includes a plurality of graphene sheets and a polymer binder used to bind the graphene sheets together and to adhere the graphene sheets onto the metal foil substrate. The conductive layer has a thickness of 0.1 ?m to 5 ?m and a resistance less than 1 ?-cm. The polymer binder increases the adhesion force, such that the integrated conductive network is thus formed. Since the polymer binder is well compatible with the binder as the active material contained in the electrochemical element. The active material of the electrochemical element is thus tightly bound with the graphene conductive layer so as to minimize the contact resistance and greatly improve the performance of the electrochemical element.
    Type: Application
    Filed: December 5, 2013
    Publication date: March 5, 2015
    Applicant: Enerage Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Rui-Jun Cheng, Shu-Ling Hsieh, Jing-Ru Chen
  • Publication number: 20150064463
    Abstract: The present invention discloses a graphene fiber and a method of manufacturing the same. The graphene fiber is manufactured by oxidizing graphite, dispersing, spinning, drying and heat treatment, and has a diameter less than 100 ?m, a ratio of length to diameter greater than 10, and a ratio of carbon to oxygen greater than 5. The graphene fiber is formed of a plurality of graphene sheets, which envelop an axis and are coaxially stacked one by one from the axis. The thickness of the graphene sheet is less than 3 nm, and chemical bonds are formed to tightly bond the graphene sheets to exhibit excellent mechanical and thermally/electrically conductive properties. The method of the present invention is implemented by simple steps so as to greatly reduce poisonous chemicals possibly generated in the manufacturing environment, thereby improving the safety of manufacturing and reducing the whole processing time and cost.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 5, 2015
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Jing-Ru CHEN, Shu-Ling HSIEH
  • Patent number: 8957003
    Abstract: A modified lubricant includes lubricant grease and nano-graphite plates dispersed thoroughly in the lubricant grease. The content of the nano-graphite plates is 0.0001 wt % to 10 wt %. Each nano-graphite plate has a length or a width between 1 and 100 ?m, a thickness within 10 nm and 100 nm, and N graphene layers stacked together and a surface modifying layer disposed on the top or bottom of the nano-graphite plates, wherein N is 30 to 300. The surface modifying layer has a surface modifying agent which includes at least two functional groups located at two ends of the surface modifying agent, one of the two functional groups is chemically bonded with certain organic functional group remaining on the surface of the nano-graphite plate, and the other of the two functional groups forms the functional surface of the nano-graphite plate.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: February 17, 2015
    Assignee: Enerage Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Jun-Meng Lin, Chen-Xin Yu
  • Publication number: 20150024122
    Abstract: A graphene ink includes a dispersion solution with a surface tension between 35 and 55 mJ/m2, a polymer binder dissolved in the dispersion solution to form a colloidal solution, and a plurality of graphene sheets dispersed in the colloidal solution with a suspension concentration of 0.1˜5 wt %. The graphene ink has a viscosity less than 100 cp and a surface potential greater than 30 mV or less than ?30 mV. The graphene ink is first prepared and then processed by the steps of masking, spraying, solidifying and removing so as to form a graphene pattern by patterning the graphene ink on an electrical insulation substrate.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 22, 2015
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu Hsieh, Rui-Jun Cheng, Cheng-Shu Peng
  • Publication number: 20140342955
    Abstract: A modified lubricant includes lubricant grease and nano-graphite plates dispersed thoroughly in the lubricant grease. The content of the nano-graphite plates is 0.0001 wt % to 10 wt %. Each nano-graphite plate has a length or a width between 1 and 100 ?m, a thickness within 10 nm and 100 nm, and N graphene layers stacked together and a surface modifying layer disposed on the top or bottom of the nano-graphite plates, wherein N is 30 to 300. The surface modifying layer has a surface modifying agent which includes at least two functional groups located at two ends of the surface modifying agent, one of the two functional groups is chemically bonded with certain organic functional group remaining on the surface of the nano-graphite plate, and the other of the two functional groups forms the functional surface of the nano-graphite plate.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Jun-Meng LIN, Chen-Xin YU
  • Publication number: 20140342142
    Abstract: A graphene transparent conductive film, Which includes a plurality of graphene sheets and a transparent conductive binder binding the graphene sheets to form the graphene transparent conductive film. The weight ratio of the graphene sheets to the transparent conductive binder is within a range of 0.01 to 1 wt %, and the volume percentage of the transparent conductive binder in the graphene transparent conductive film is within a range of 0.5 to 10%. The transparent conductive binder is a transparent conductive polymer comprising at least one structure of polythiophene and polycationic polymer. The graphene sheets are stacked and bound together by the transparent conductive binder to form the integrated conductive network structure such that the resulting graphene transparent conductive film still has lower sheet resistance with high transparency. Therefore, the present invention can be formed on the flexible support body and greatly expand the field of application.
    Type: Application
    Filed: September 20, 2013
    Publication date: November 20, 2014
    Applicant: ENERAGE INC.
    Inventors: Mark Y. WU, Cheng-Yu Hsieh, Cheng-Shu Peng
  • Publication number: 20140308522
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH
  • Patent number: 8722004
    Abstract: The present invention relates to a method for the preparation of a lithium phosphate compound with an olivine crystal structure, which has a chemical formula of LixMyM?1-yPO4, wherein 0.1?x?1, 0?y?1. The nano-scale lithium phosphate ceramic powder was synthesized by using a self-propagating combustion with reactants of soluble salts and the proper oxidizing agents, followed by heat treatment of powder to obtain nano-scale lithium phosphate compound with an olivine crystal structure in a complete crystal phase. The method of the present invention uses low cost materials and simple processes. The uniform crystal product materials are beneficial to the industrial application.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: May 13, 2014
    Assignee: Phosage, Inc.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Chih-Hao Chiu
  • Publication number: 20130327702
    Abstract: A structure of an electrochemical separation membrane and a manufacturing method for fabricating the same are disclosed. The structure of an electrochemical separation membrane includes a base-phased polymer part in form of a continuous phase structure, a fabric-supported part distributed in the base-phased polymer part in striped shape to provide mechanic strength thereto, and inorganic particles distributed uniformly in the base-phased polymer part with 0.1 wt %˜50 wt %, wherein the fabric-supported part is a porous structure with a plurality of micro holes such that the base-phased polymer part filled into the micro holes to obtain better adhesive strength, inorganic particles distributed uniformly in the base-phased polymer part to reduce the shrinking of separation membrane and hence improving the thermal stability under high temperature.
    Type: Application
    Filed: November 7, 2012
    Publication date: December 12, 2013
    Applicant: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Yuan-Hsin Chang, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20130327704
    Abstract: An electrochemical separation membrane and the manufacturing method thereof are disclosed. The method includes: a polymer solution preparing step to mix a polymer material, solvent and ceramic precursors thoroughly to form a polymer solution, wherein the polymer material and the ceramic precursors are dissolved uniformly in the solvent; a coating step to coat the polymer solution on a porous base material; a hydrolysis step to cause the porous base material coated with the polymer solution to contact an aqueous solution to hydrolyze the ceramic precursor into ceramic particles; and a drying step to remove the water and the solvent from the porous base material and in order to form the electrochemical separation membrane. The electrochemical separation membrane made of this method have better ion conductivity, interface stability and thermal stability based on the ceramic particles.
    Type: Application
    Filed: November 7, 2012
    Publication date: December 12, 2013
    Applicant: ENERAGE INC.
    Inventors: Mark Y. Wu, Cheng-Yu Hsieh, Yuan-Hsin Chang, Jing-Ru Chen, Shu-Ling Hsieh
  • Publication number: 20100202951
    Abstract: The present invention relates to a method for the preparation of a lithium phosphate compound with an olivine crystal structure, which has a chemical formula of LixMyM?1-yPO4, wherein 0.1?x?1, 0?y?1. The nano-scale lithium phosphate ceramic powder was synthesized by using a self-propagating combustion with reactants of soluble salts and the proper oxidizing agents, followed by heat treatment of powder to obtain nano-scale lithium phosphate compound with an olivine crystal structure in a complete crystal phase. The method of the present invention uses low cost materials and simple processes. The uniform crystal product materials are beneficial to the industrial application.
    Type: Application
    Filed: June 4, 2009
    Publication date: August 12, 2010
    Inventors: Mark Y. WU, Cheng-Yu Hsieh, Chih-Hao Chiu
  • Patent number: 7687427
    Abstract: The present invention discloses a novel process for the fabrication of a class of conductive supported electrocatalysts based on transition metals. The electrocatalysts are formed by pyrolysis of an organometallic polymer complex precursor which is the reaction product of transition metal salts and a templating polymer. The electrocatalysts has enhanced catalytic activity, and are useful in the preparation of supercapacitor and fuel cell electrodes, auto-thermal fuel reformer catalysts, oxygen and hydrogen sensors, zinc-air battery electrode and oxidation catalysts.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: March 30, 2010
    Assignee: Enerage, Inc.
    Inventor: Mark Y. Wu