Patents by Inventor Marko Dorschu

Marko Dorschu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7865055
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 4, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Publication number: 20100158469
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Application
    Filed: November 13, 2009
    Publication date: June 24, 2010
    Applicant: DSM IP ASSETS B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Patent number: 7706659
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: April 27, 2010
    Assignee: DSM IP Assets B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Publication number: 20100058877
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Application
    Filed: November 13, 2009
    Publication date: March 11, 2010
    Applicant: DSM IP ASSETS B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Publication number: 20090311466
    Abstract: The invention relates to a multilayered material sheet comprising a consolidated stack of unidirectional monolayers of drawn polymer, whereby the draw direction of two subsequent monolayers in the stack differs. At least one monolayer comprises a plurality of unidirectional tapes of the drawn polymer, aligned in the same direction, whereby adjacent tapes do not overlap. The invention also relates to a process for the preparation of the multilayered material sheet, and to a ballistic resistant article comprising the multilayered material sheet.
    Type: Application
    Filed: April 26, 2007
    Publication date: December 17, 2009
    Inventors: Roelof Marissen, Joseph Arnold Paul Maria Simmelink, Reinhard Josef Maria Steeman, Gijsbertus Hendrikus Maria Calis, Jacobus Johannes Mencke, Jean Hubert Marie, David Vanek, Johann Van Elburg, Alexander Volker Peters, Sleen Tanderup, Marko Dorschu
  • Publication number: 20090280708
    Abstract: The invention relates to a multilayered material sheet comprising a consolidated stack of unidirectional monolayers of drawn polymer. The draw direction of two subsequent monolayers in the stack differs. Moreover the strength to thickness ratio of at least one monolayer is larger than 4.5.1013 N/m3. The invention also relates to a ballistic resistant article comprising the multilayered material sheet and to a process for the preparation of the ballistic resistant article.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 12, 2009
    Inventors: Roelof Marissen, Joseph Arnold Paul Maria Simmelink, Renard Jozef Maria Steeman, Gijsbertus Hendrikus Maria Calis, Jacobus Johannes Mencke, Jean Hubert Marie Beugels, David Vanek, Johann Van Elburg, Alexander Volker Peters, Steen Tanderup, Marko Dorschu
  • Patent number: 7067564
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: June 27, 2006
    Assignee: DSM IP Assets B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P . V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Publication number: 20060089450
    Abstract: The present invention relates to a radiation curable coating composition comprising (A) a compound according to P-(D-(meth)acrylate)n having a number average molecular weight (Mn) of at least 500 kg/kmol, wherein n=240, P=oligomeric or polymeric backbone, and D comprises an urethane group and an heterocyclic group, said heterocyclic group having a Boltzmann average dipole moment of at least 2.5 Debye, and (B) a reactive diluent. The heteorocylic group is preferably an oxazolidone group. The invention further relates to a method for making a resin composition comprising a compound comprising an oxazolidone group and an (meth)acrylate group, said method comprising a reaction step introducing the (meth)acrylate group into the compound, wherein said reaction step is carried out in the presence of an antioxidant.
    Type: Application
    Filed: May 16, 2003
    Publication date: April 27, 2006
    Inventors: Johan Jansen, Marko Dorschu, Olav Aagaard, Gerry Noren
  • Publication number: 20060062539
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Application
    Filed: November 9, 2005
    Publication date: March 23, 2006
    Applicant: DSM IP Assets B.V.
    Inventors: Markus Bulters, Gerrit Rekers, Philippe Bleiman, Jozef Linsen, Alexander Stroeks, Johannes Van Eekelen, Adrianus Abel, Marko Dorschu, Paulus Steeman
  • Publication number: 20050187310
    Abstract: The invention relates to a radiation curable composition comprising radiation curable components wherein at least one component of the radiation curable composition contains a functional group which, when attached to an acrylate group has a calculated Boltzmann average dipole moment of higher than 3.5 Debye. The invention further relates to radiation curable optical fiber coating compositions having a high dielectric constant.
    Type: Application
    Filed: April 20, 2005
    Publication date: August 25, 2005
    Applicant: DSM IP Assets, B.V.
    Inventors: Johan Jansen, Aylvin Dias, Marko Dorschu, Betty Coussens
  • Patent number: 6916855
    Abstract: The invention relates to a radiation curable composition comprising radiation curable components wherein at least one component of the radiation curable composition contains a functional group which, when attached to an acrylate group has a calculated Boltzmann average dipole moment of higher than 3.5 Debye. The invention further relates to radiation curable optical fiber coating compositions having a high dielectric constant.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: July 12, 2005
    Assignee: DSM IP Assets B.V.
    Inventors: Johan F. G. A. Jansen, Aylvin J. A. A. Dias, Marko Dorschu, Betty B Coussens
  • Publication number: 20030215196
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (&sgr;10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min−1 and of at least about 1.4 times their dynamic modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Application
    Filed: December 17, 2002
    Publication date: November 20, 2003
    Applicant: DSM N.V.
    Inventors: Markus J.H. Bulters, Gerrit Rekers, Philippe W.P.V. Bleiman, Jozef M.H. Linsen, Alexander A.M. Stroeks, Johannes A. Van Eekelen, Adrianus G.M. Abel, Marko Dorschu, Paulus A.M. Steeman
  • Publication number: 20030149127
    Abstract: The invention relates to a radiation curable composition comprising radiation curable components wherein at least one component of the radiation curable composition contains a functional group which, when attached to an acrylate group has a calculated Boltzmann average dipole moment of higher than 3.5 Debye. The invention further relates to radiation curable optical fiber coating compositions having a high dielectric constant.
    Type: Application
    Filed: November 21, 2001
    Publication date: August 7, 2003
    Inventors: Johan F.G.A. Jansen, Aylvin J.A.A. Dias, Marko Dorschu, Betty B. Coussens