Patents by Inventor Marko Radosavlievic

Marko Radosavlievic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110458
    Abstract: In general, in one aspect, a method includes using the Germanium nanowire as building block for high performance logic, memory and low dimensional quantum effect devices. The Germanium nanowire channel and the SiGe anchoring regions are formed simultaneously through preferential Si oxidation of epitaxial Silicon Germanium epi layer. The placement of the germanium nanowires is accomplished using a Si fin as a template and the germanium nanowire is held on Si substrate through SiGe anchors created by masking the two ends of the fins. High dielectric constant gate oxide and work function metals wrap around the Germanium nanowire for gate-all-around electrostatic channel on/off control, while the Germanium nanowire provides high carrier mobility in the transistor channel region. The germanium nanowire transistors enable high performance, low voltage (low power consumption) operation of logic and memory devices.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 7, 2012
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Jack T. Kavalieros, Matthew V. Metz, Marko Radosavlievic, Robert S. Chau
  • Publication number: 20100200835
    Abstract: In general, in one aspect, a method includes using the Germanium nanowire as building block for high performance logic, memory and low dimensional quantum effect devices. The Germanium nanowire channel and the SiGe anchoring regions are formed simultaneously through preferential Si oxidation of epitaxial Silicon Germanium epi layer. The placement of the germanium nanowires is accomplished using a Si fin as a template and the germanium nanowire is held on Si substrate through SiGe anchors created by masking the two ends of the fins. High dielectric constant gate oxide and work function metals wrap around the Germanium nanowire for gate-all-around electrostatic channel on/off control, while the Germanium nanowire provides high carrier mobility in the transistor channel region. The germanium nanowire transistors enable high performance, low voltage (low power consumption) operation of logic and memory devices.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Inventors: Been-Yih Jin, Jack T. Kavalieros, Matthew V. Metz, Marko Radosavlievic, Robert S. Chau
  • Patent number: 7727830
    Abstract: In general, in one aspect, a method includes using the Germanium nanowire as building block for high performance logic, memory and low dimensional quantum effect devices. The Germanium nanowire channel and the SiGe anchoring regions are formed simultaneously through preferential Si oxidation of epitaxial Silicon Germanium epi layer. The placement of the germanium nanowires is accomplished using a Si fin as a template and the germanium nanowire is held on Si substrate through SiGe anchors created by masking the two ends of the fins. High dielectric constant gate oxide and work function metals wrap around the Germanium nanowire for gate-all-around electrostatic channel on/off control, while the Germanium nanowire provides high carrier mobility in the transistor channel region. The germanium nanowire transistors enable high performance, low voltage (low power consumption) operation of logic and memory devices.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Jack T. Kavalieros, Matthew V. Metz, Marko Radosavlievic, Robert S. Chau
  • Patent number: 7569869
    Abstract: A transistor structure and a system including the transistor structure. The transistor structure comprises: a substrate including a first layer comprising a first crystalline material; a tensile strained channel formed on a surface of the first layer and comprising a second crystalline material having a lattice spacing that is smaller than a lattice spacing of the first crystalline material; a metal gate on the substrate; a pair of sidewall spacers on opposite sides of the metal gate; and a source region and a drain region on opposite sides of the metal gate adjacent a corresponding one of the sidewall spacers.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 4, 2009
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Robert S. Chau, Suman Datta, Jack T. Kavalieros, Marko Radosavlievic
  • Publication number: 20090170251
    Abstract: In general, in one aspect, a method includes using the Germanium nanowire as building block for high performance logic, memory and low dimensional quantum effect devices. The Germanium nanowire channel and the SiGe anchoring regions are formed simultaneously through preferential Si oxidation of epitaxial Silicon Germanium epi layer. The placement of the germanium nanowires is accomplished using a Si fin as a template and the germanium nanowire is held on Si substrate through SiGe anchors created by masking the two ends of the fins. High dielectric constant gate oxide and work function metals wrap around the Germanium nanowire for gate-all-around electrostatic channel on/off control, while the Germanium nanowire provides high carrier mobility in the transistor channel region. The germanium nanowire transistors enable high performance, low voltage (low power consumption) operation of logic and memory devices.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Been-Yih Jin, Jack T. Kavalieros, Matthew V. Metz, Marko Radosavlievic, Robert S. Chau
  • Publication number: 20080237636
    Abstract: A transistor structure and a system including the transistor structure. The transistor structure comprises: a substrate including a first layer comprising a first crystalline material; a tensile strained channel formed on a surface of the first layer and comprising a second crystalline material having a lattice spacing that is smaller than a lattice spacing of the first crystalline material; a metal gate on the substrate; a pair of sidewall spacers on opposite sides of the metal gate; and a source region and a drain region on opposite sides of the metal gate adjacent a corresponding one of the sidewall spacers.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: Been-Yih Jin, Robert S. Chau, Suman Datta, Jack T. Kavalieros, Marko Radosavlievic
  • Publication number: 20060292776
    Abstract: An NMOS transistor may be formed with a biaxially strained silicon upper layer having a thickness of greater than 500 Angstroms. The resulting NMOS transistor may have good performance and may exhibit reduced self-heating. A PMOS transistor may be formed with both a biaxially and uniaxially strained silicon germanium layer. A source substrate bias applied to both NMOS and PMOS transistors can enhance their performance.
    Type: Application
    Filed: June 27, 2005
    Publication date: December 28, 2006
    Inventors: Been-Yih Jin, Robert Chau, Suman Datta, Brian Doyle, Jack Kavalieros, Justin Brask, Mark Doczy, Matthew Metz, Markus Kuhn, Marko Radosavlievic, M. Shaheed, Patrick Keys