Patents by Inventor Marko Rusanen

Marko Rusanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230310890
    Abstract: Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Applicant: SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Jarkko PELTOLA, Marko RUSANEN, Ville PIETILA
  • Patent number: 11679274
    Abstract: Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: June 20, 2023
    Assignee: SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Jarkko Peltola, Marko Rusanen, Ville Pietila
  • Publication number: 20220296924
    Abstract: Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Jarkko PELTOLA, Marko RUSANEN, Ville PIETILA
  • Publication number: 20220296923
    Abstract: Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Jarkko PELTOLA, Marko RUSANEN, Ville PIETILA
  • Publication number: 20220176160
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Application
    Filed: February 23, 2022
    Publication date: June 9, 2022
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 11285339
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 29, 2022
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Publication number: 20190209863
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Applicant: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 10307615
    Abstract: An optimized radiation treatment plan may be developed in which the total monitor unit (MU) count is taken into account. A planner may specify a maximum treatment time. An optimization algorithm may convert the specified maximum treatment time to a maximum total MU count, which is then used as a constraint in the optimization process. A cost function for the optimization algorithm may include a term that penalizes any violation of the upper constraint for the MU count.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: June 4, 2019
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 10272264
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: April 30, 2019
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Publication number: 20180078785
    Abstract: An optimized radiation treatment plan may be developed in which the total monitor unit (MU) count is taken into account. A planner may specify a maximum treatment time. An optimization algorithm may convert the specified maximum treatment time to a maximum total MU count, which is then used as a constraint in the optimization process. A cost function for the optimization algorithm may include a term that penalizes any violation of the upper constraint for the MU count.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 22, 2018
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Publication number: 20180078789
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 22, 2018
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 8693630
    Abstract: These various embodiments access target information regarding a radiation-therapy treatment volume for a given patient as well as non-target information regarding at least one structure other than the radiation-therapy treatment volume that also comprises a part of the given patient. These embodiments then provide for accessing uncertainties information regarding spatial uncertainties as pertain to at least one of the target information and the non-target information and using that uncertainties information to characterize at least one radiation-therapy treatment plan optimization consideration with respect to a preference of usage to thereby provide preference considerations. These preference considerations are then used to influence a follow-on radiation-therapy treatment plan optimization process when developing a treatment plan for the radiation-therapy treatment volume.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 8, 2014
    Assignee: Varian Medical Systems International AG
    Inventors: Janne Nord, Lasse Toimela, Marko Rusanen
  • Patent number: 8284897
    Abstract: One accesses information regarding the functionality of portions of the patient's body and then uses that information to optimize a radiation-treatment plan to treat a target portion of the patient's body while minimizing at least some collateral radiation-based damage to non-targeted functional portions of the patient's body. By one approach, the aforementioned information can comprise a functionality model as pertains to at least some portions of the patient's body. As one example in these regards, this can comprise optimizing the radiation-treatment plan such that the planned radiation beams tend to pass through non-targeted less-functional portions of the patient's body rather than through non-targeted portions of the patient's body of greater functionality.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 9, 2012
    Assignee: Varian Medical Systems International AG
    Inventors: Janne Nord, Ramin Baghaie, Marko Rusanen, Juha Kauppinen
  • Publication number: 20120175530
    Abstract: These various embodiments access target information regarding a radiation-therapy treatment volume for a given patient as well as non-target information regarding at least one structure other than the radiation-therapy treatment volume that also comprises a part of the given patient. These embodiments then provide for accessing uncertainties information regarding spatial uncertainties as pertain to at least one of the target information and the non-target information and using that uncertainties information to characterize at least one radiation-therapy treatment plan optimization consideration with respect to a preference of usage to thereby provide preference considerations. These preference considerations are then used to influence a follow-on radiation-therapy treatment plan optimization process when developing a treatment plan for the radiation-therapy treatment volume.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 12, 2012
    Applicant: VARIAN MEDICAL SYSTEMS INTERNATIONAL AG
    Inventors: Janne Nord, Lasse Toimela, Marko Rusanen
  • Publication number: 20110182409
    Abstract: One accesses information regarding the functionality of portions of the patient's body and then uses that information to optimize a radiation-treatment plan to treat a target portion of the patient's body while minimizing at least some collateral radiation-based damage to non-targeted functional portions of the patient's body. By one approach, the aforementioned information can comprise a functionality model as pertains to at least some portions of the patient's body. As one example in these regards, this can comprise optimizing the radiation-treatment plan such that the planned radiation beams tend to pass through non-targeted less-functional portions of the patient's body rather than through non-targeted portions of the patient's body of greater functionality.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 28, 2011
    Applicant: VARIAN MEDICAL SYSTEMS INTERNATIONAL AG
    Inventors: Janne Nord, Ramin Baghaie, Marko Rusanen, Juha Kauppinen