Patents by Inventor Markus D. Herrema

Markus D. Herrema has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965203
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: April 23, 2024
    Assignee: Newlight Technologies, Inc.
    Inventor: Markus D. Herrema
  • Patent number: 11732280
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: August 22, 2023
    Assignee: Newlight Technologies, Inc.
    Inventor: Markus D. Herrema
  • Publication number: 20220195468
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 23, 2022
    Inventor: Markus D. Herrema
  • Publication number: 20210403961
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: July 1, 2021
    Publication date: December 30, 2021
    Inventor: Markus D. Herrema
  • Patent number: 11053521
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: July 6, 2021
    Assignee: Newlight Technologies, Inc.
    Inventor: Markus D. Herrema
  • Publication number: 20200347417
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventor: Markus D. Herrema
  • Publication number: 20200115724
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: September 20, 2019
    Publication date: April 16, 2020
    Inventor: Markus D. Herrema
  • Patent number: 10450592
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: October 22, 2019
    Assignee: NEWLIGHT TECHNOLOGIES, INC.
    Inventor: Markus D. Herrema
  • Publication number: 20170369908
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: July 7, 2017
    Publication date: December 28, 2017
    Inventor: Markus D. Herrema
  • Patent number: 9725744
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: August 8, 2017
    Assignee: Newlight Technologies, Inc.
    Inventor: Markus D. Herrema
  • Publication number: 20150275241
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventor: Markus D. Herrema
  • Patent number: 9085784
    Abstract: Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 21, 2015
    Assignee: Newlight Technologies, LLC
    Inventor: Markus D. Herrema