Patents by Inventor Markus J. H. Bulters
Markus J. H. Bulters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7886612Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: GrantFiled: November 13, 2009Date of Patent: February 15, 2011Assignee: DSM IP Assets B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Patent number: 7865055Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: GrantFiled: November 13, 2009Date of Patent: January 4, 2011Assignee: DSM IP Assets B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Publication number: 20100158469Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: ApplicationFiled: November 13, 2009Publication date: June 24, 2010Applicant: DSM IP ASSETS B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Patent number: 7706659Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: GrantFiled: November 9, 2005Date of Patent: April 27, 2010Assignee: DSM IP Assets B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Publication number: 20100058877Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: ApplicationFiled: November 13, 2009Publication date: March 11, 2010Applicant: DSM IP ASSETS B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Patent number: 7067564Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: GrantFiled: November 21, 2001Date of Patent: June 27, 2006Assignee: DSM IP Assets B.V.Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P . V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
-
Patent number: 6878225Abstract: The invention relates to a process for bringing about a permanent connection between at least two components, one of which components is obtained by moulding of a thermoplastic elastomeric material, characterized in that the component is subjected to a treatment comprising the following steps: a. stretching of the component of thermoplastic elastomeric material b. relaxation of the component subjected to step (a) at ambient temperature c. placement of the component obtained sub (b) at the location of the desired connection in the object d. exposure to an increased temperature of at most about 20° C. below the melting point of the thermoplastic elastomer. Application of the process of the invention, in particular during step (d), produces a shrunk connection which provides a permanent seal under tension. The invention may be applied for many types of connections and seals, for example body plugs, shrink-on sleeving, sealing rings, etc.Type: GrantFiled: March 8, 2001Date of Patent: April 12, 2005Assignee: DSM IP Assets B.V.Inventors: Antonio Avides Moreira, Markus J. H. Bulters
-
Patent number: 6673423Abstract: The invention relates to an information-carrying molded part containing one or more plastic layers, at least one of which bears an informative representation. A ‘molded part’ is understood to be in particular a card such as ‘smart cards’, key cards, identification cards, telephone cards, credit cards or bank cards. According to the invention at least one of the plastic layers herein is made from a block-copolyester consisting of soft blocks of a flexible polymer and hard polyester blocks of repeating units of at least one alkylene glycol and at least one aromatic dicarboxylic acid or an ester thereof. The block-copolyether layer can very well be provided with an informative representation with the aid of laser writing and for example sublimation printing. The information-carrying molded part according to the invention also has a good stiffness combined with a good flexibility and a good resistance to breaking and tearing, good adhesion to for example polycarbonate.Type: GrantFiled: March 8, 2002Date of Patent: January 6, 2004Assignee: DSM N.V.Inventors: Saskia I. Kranenburg-Van Dijk, Franciscus W.M. Gelissen, Markus J.H. Bulters, Christiaan Schröder
-
Publication number: 20030215196Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (&sgr;10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min−1 and of at least about 1.4 times their dynamic modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: ApplicationFiled: December 17, 2002Publication date: November 20, 2003Applicant: DSM N.V.Inventors: Markus J.H. Bulters, Gerrit Rekers, Philippe W.P.V. Bleiman, Jozef M.H. Linsen, Alexander A.M. Stroeks, Johannes A. Van Eekelen, Adrianus G.M. Abel, Marko Dorschu, Paulus A.M. Steeman
-
Patent number: 6605329Abstract: The invention relates to a thermoplastic moulded part comprising at least a polyolefin or a polycondensation polymer and reinforcing fibers, characterized in that 1 to 60 wt. % of the moulded part consists of reinforcing fibers with a length of between 0.8 and 15 mm, at least a portion of which is present partly in the center and partly in the non-porous dish surface, and that the moulded part has a porosity of between 5 and 95 vol. %. The invention also relates to a process for producing such a moulded part.Type: GrantFiled: October 15, 2001Date of Patent: August 12, 2003Assignee: DSM N.V.Inventors: Markus J. H. Bulters, Petrus H. M. Stokman, Johannes H. Geesink
-
Patent number: 6465572Abstract: Polymer composition containing: A. 100-40 wt. % of a propylene block copolymer, with a melt index of at least 1.0 dg/min (230° C., 16 kg) and containing block a1 of propylene monomer units and optionally ethylene monomer units, and block a2 of propylene monomer units and ethylene monomer units; B. 0-30 wt. % of an impact modifier; C. 0-50 wt. % of filler, and D. 0.1-10 parts per 100 parts A1 of ultra high molecular weight polypropylene. These polymer compositions are useful for injection molding large parts at high injection rates without exhibiting surface defects.Type: GrantFiled: November 28, 2000Date of Patent: October 15, 2002Assignee: DSM N.V.Inventors: Markus J. H. Bulters, Henricus A. J. Schepens, Nicolaas J. J. Aelmans
-
Publication number: 20020146549Abstract: The invention relates to an information-carrying molded part containing one or more plastic layers, at least one of which bears an informative representation. A ‘molded part’ is understood to be in particular a card such as ‘smart cards’, key cards, identification cards, telephone cards, credit cards or bank cards. According to the invention at least one of the plastic layers herein is made from a block-copolyester consisting of soft blocks of a flexible polymer and hard polyester blocks of repeating units of at least one alkylene glycol and at least one aromatic dicarboxylic acid or an ester thereof. The block-copolyether layer can very well be provided with an informative representation with the aid of laser writing and for example sublimation printing. The information-carrying molded part according to the invention also has a good stiffness combined with a good flexibility and a good resistance to breaking and tearing, good adhesion to for example polycarbonate.Type: ApplicationFiled: March 8, 2002Publication date: October 10, 2002Inventors: Saskia I. Kranenburg-Van Dijk, Franciscus W.M. Gelissen, Markus J.H. Bulters, Christiaan Schroder
-
Publication number: 20020146225Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (&sgr;10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min−1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.Type: ApplicationFiled: November 21, 2001Publication date: October 10, 2002Inventors: Markus J.H. Bulters, Gerrit Rekers, Philippe W.P.V. Bleiman, Jozef M.H. Linsen, Alexander A.M. Stroeks, Johannes A. Van Eekelen, Adrianus G.M. Abel, Marko Dorscho, Paulus A.M. Steeman
-
Publication number: 20020025424Abstract: The invention relates to a thermoplastic molded part comprising at least a polyolefin or a polycondensation polymer and reinforcing fibers, characterized in that 1 to 60 wt. % of the molded part consists of reinforcing fibers with a length of between 0.8 and 15 mm, at least a portion of which is present partly in the center and partly in the non-porous dish surface, and that the molded part has a porosity of between 5 and 95 vol. %.Type: ApplicationFiled: October 15, 2001Publication date: February 28, 2002Applicant: DSm N.V.Inventors: Markus J.H. Bulters, Petrus H.M. Stokman, Johannes H. Geesink
-
Patent number: 6303070Abstract: The invention relates to a thermoplastic molded part comprising at least a polyolefin or a polycondensation polymer and reinforcing fibers, characterized in that 1 to 60 wt. % of the molded part consists of reinforcing fibers with a length of between 0.8 and 15 mm, at least a portion of which is present partly in the center and partly in the non-porous dish surface, and that the molded part has a porosity of between 5 and 95 vol. %. The invention also relates to a process for producing such a molded part.Type: GrantFiled: April 8, 1999Date of Patent: October 16, 2001Assignee: DSM N.V.Inventors: Markus J. H. Bulters, Petrus H. M. Stokman, Johannes H. Geesink
-
Patent number: 5430073Abstract: The invention relates to a process for preparing a polymer in which in situ polymerization of monomers takes place in the presence of a catalyst, in which the monomers are obtained by in situ activation of precursor monomers.According to the invention a premature polymerization is avoided, but polymerization only starts at the desired moment.Type: GrantFiled: July 15, 1993Date of Patent: July 4, 1995Assignee: DSM, N.V.Inventors: Hans K. Van Dijk, Ronald M. A. M. Schellekens, Markus J. H. Bulters, Olav M. Aagaard, Gerard P. De Vries, Matthias J. G. Brouns
-
Patent number: 5362760Abstract: A microporous film with improved resistance to elevated temperatures from a first, thermoplastic polymer, the internal and external surfaces of the film being provided with a continuous coating layer of a second polymer having a higher softening temperature than the first polymer and process for coating a film of a first polymer with a layer of a second polymer.Type: GrantFiled: January 15, 1992Date of Patent: November 8, 1994Assignee: DSM N.V.Inventors: Markus J. H. Bulters, Hans K. Van Dijk, Ronald M. A. M. Schellekens