Patents by Inventor Markus Loeffler

Markus Loeffler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346837
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: March 2, 2023
    Publication date: November 2, 2023
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20230226495
    Abstract: The present disclosure relates to a diffusion device, such as a blood oxygenator or gas exchanger, and a process for its production. The diffusion device is used in the removal of carbon dioxide from blood.
    Type: Application
    Filed: June 17, 2021
    Publication date: July 20, 2023
    Inventors: Joachim LOERCHER, Ralf FLIEG, Torsten KNOER, Steffen WAGNER, Christof BECK, Markus LOEFFLER
  • Patent number: 11560405
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11559550
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: January 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11542303
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: January 3, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Publication number: 20220362302
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 17, 2022
    Publication date: November 17, 2022
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20220356208
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: July 8, 2022
    Publication date: November 10, 2022
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20220339585
    Abstract: The present disclosure relates to a spinneret for producing hollow fiber membranes in a phase inversion process.
    Type: Application
    Filed: December 21, 2020
    Publication date: October 27, 2022
    Inventors: Reinhold BUCK, Evelyn GROSSMANN, Markus HORNUNG, Markus LOEFFLER, Heinrich BEHR, Arnd WOCHNER, Carl-Philipp SCHEUERMANN
  • Publication number: 20220332760
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 20, 2022
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Patent number: 11427614
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 30, 2022
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Publication number: 20220118016
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 23, 2021
    Publication date: April 21, 2022
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20220016716
    Abstract: A tool for chip removing machining includes a tool body having at least one insert seat that accommodates a cutting insert having a top and a bottom surface. The tool body secures the cutting insert in the insert seat by an attachment member, and the insert seat has a bottom surface and at least one side surface. The tool includes at least one assembling aid, which is provided at least at one insert seat and which includes a clamping section and a mounting section. The clamping section extends above the bottom surface of the insert seat for, when the cutting insert is accommodated in the insert seat, engaging the top surface of the cutting insert. The clamping section is biased towards the bottom surface of the insert seat and the mounting section is attached to the tool body. A kit includes the tool, a shim and the assembling aid.
    Type: Application
    Filed: September 2, 2019
    Publication date: January 20, 2022
    Inventors: Hubert BUERKLE, Michael WUETZ, Markus LOEFFLER
  • Publication number: 20210322478
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Patent number: 11135246
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: October 5, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11103534
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 31, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Publication number: 20210213065
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 15, 2021
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20210161962
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 21, 2021
    Publication date: June 3, 2021
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Patent number: 11020432
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: June 1, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 11007223
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 18, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen
  • Patent number: 10993963
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: May 4, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Sarah Walz, Daniel Johannes Kowalewski, Markus Loeffler, Moreno Di Marco, Nico Trautwein, Annika Nelde, Stefan Stevanovic, Hans-Georg Rammensee, Sebastian Haen