Patents by Inventor Markus Schnell

Markus Schnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535356
    Abstract: An apparatus for encoding a multi-channel signal having at least two channels is provided. The apparatus includes a time-spectral converter, converting sequences of blocks of sample values of the two channels into a frequency domain representation having sequences of blocks of spectral values for the two channels, a block of sampling values having an associated input sampling rate, a block of spectral values of the sequences of blocks that has spectral values up to a maximum input frequency related to the input sampling rate; a multi-channel processor to obtain a result sequence of blocks of spectral values having information related to the two channels; a spectral domain resampler to obtain a resampled sequence of blocks of spectral values; a spectral-time converter for converting the resampled sequence of blocks into a time domain representation; and a core encoder for encoding the output sequence of blocks to obtain an encoded multi-channel signal.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: January 14, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Emmanuel Ravelli, Markus Multrus, Markus Schnell, Stefan Doehla, Martin Dietz, Goran Markovic, Eleni Fotopoulou, Stefan Bayer, Wolfgang Jaegers
  • Publication number: 20190371346
    Abstract: An apparatus for generating an encoded signal includes: a window sequence controller for generating a window sequence information for windowing an audio or image signal, the window sequence information indicating a first window for generating a first frame of spectral values, a second window function and at least one third window function for generating a second frame of spectral values, wherein the first window function, the second window function and the one or more third window functions overlap within a multi-overlap region; a preprocessor for windowing a second block of samples corresponding to the second window function and the at least one third window functions using an auxiliary window function to acquire a second block of windowed samples, a spectrum converter for applying an aliasing-introducing transform; and a processor for processing the first frame and the second frame to acquire encoded frames of the audio or image signal.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 5, 2019
    Inventors: Christian HELMRICH, Jérémie LECOMTE, Goran MARKOVIC, Markus SCHNELL, Bernd EDLER, Stefan REUSCHL
  • Publication number: 20190362728
    Abstract: An audio encoder for providing an encoded audio information on the basis of an input audio information has a bandwidth extension information provider configured to provide bandwidth extension information using a variable temporal resolution and a detector configured to detect an onset of a fricative or affricate. The audio encoder is configured to adjust a temporal resolution used by the bandwidth extension information provider such that bandwidth extension information is provided with an increased temporal resolution at least for a predetermined period of time before a time at which an onset of a fricative or affricate is detected and for a predetermined period of time following the time at which the onset of the fricative or affricate is detected. Alternatively or in addition, the bandwidth extension information is provided with an increased temporal resolution in response to a detection of an offset of a fricative or affricate. Audio encoders and methods use a corresponding concept.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Sascha DISCH, Christian HELMRICH, Markus MULTRUS, Markus SCHNELL, Arthur TRITTHART
  • Publication number: 20190333529
    Abstract: According to an aspect of the present invention an encoder for encoding an audio signal has an analyzer configured for deriving prediction coefficients and a residual signal from a frame of the audio signal. The encoder has a formant information calculator configured for calculating a speech related spectral shaping information from the prediction coefficients, a gain parameter calculator configured for calculating a gain parameter from an unvoiced residual signal and the spectral shaping information and a bitstream former configured for forming an output signal based on an information related to a voiced signal frame, the gain parameter or a quantized gain parameter and the prediction coefficients.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Guillaume FUCHS, Markus MULTRUS, Emmanuel RAVELLI, Markus SCHNELL
  • Patent number: 10438596
    Abstract: An audio encoder for providing an encoded audio information on the basis of an input audio information has a bandwidth extension information provider configured to provide bandwidth extension information using a variable temporal resolution and a detector configured to detect an onset of a fricative or affricate. The audio encoder is configured to adjust a temporal resolution used by the bandwidth extension information provider such that bandwidth extension information is provided with an increased temporal resolution at least for a predetermined period of time before a time at which an onset of a fricative or affricate is detected and for a predetermined period of time following the time at which the onset of the fricative or affricate is detected. Alternatively or in addition, the bandwidth extension information is provided with an increased temporal resolution in response to a detection of an offset of a fricative or affricate. Audio encoders and methods use a corresponding concept.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: October 8, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Christian Helmrich, Markus Multrus, Markus Schnell, Arthur Tritthart
  • Patent number: 10431230
    Abstract: A downscaled version of an audio decoding procedure may more effectively and/or at improved compliance maintenance be achieved if the synthesis window used for downscaled audio decoding is a downsampled version of a reference synthesis window involved in the non-downscaled audio decoding procedure by downsampling by the downsampling factor by which the downsampled sampling rate and the original sampling rate deviate, and downsampled using a segmental interpolation in segments of ¼ of the frame length.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 1, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung de angewandten forschung e.V.
    Inventors: Markus Schnell, Manfred Lutzky, Eleni Fotopoulou, Konstantin Schmidt, Conrad Benndorf, Adrian Tomasek, Tobias Albert, Timon Seidl
  • Patent number: 10424309
    Abstract: An apparatus for encoding a multi-channel signal including at least two channels includes a time-spectral converter for converting sequences of blocks of sampling values of the at least two channels into a frequency domain representation having sequences of blocks of spectral values for the at least two channels; a multi-channel processor for applying a joint multi-channel processing to the sequences of blocks of spectral values to obtain at least one result sequence of blocks of spectral values including information related to the at least two channels; a spectral-time converter for converting the result sequence of blocks of spectral values into a time domain representation including an output sequence of blocks of sampling values; and a core encoder for encoding the output sequence of blocks of sampling values to obtain an encoded multi-channel signal.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 24, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Emmanuel Ravelli, Markus Multrus, Markus Schnell, Stefan Doehla, Martin Dietz, Goran Markovic, Eleni Fotopoulou, Stefan Bayer, Wolfgang Jaegers
  • Publication number: 20190267016
    Abstract: An audio encoder for encoding an audio signal includes: a first encoding processor for encoding a first audio signal portion in a frequency domain, wherein the first encoding processor includes: a time frequency converter for converting the first audio signal portion into a frequency domain representation having spectral lines up to a maximum frequency of the first audio signal portion; a spectral encoder for encoding the frequency domain representation; a second encoding processor for encoding a second different audio signal portion in the time domain; a cross-processor for calculating, from the encoded spectral representation of the first audio signal portion, initialization data of the second encoding processor, so that the second encoding processing is initialized to encode the second audio signal portion immediately following the first audio signal portion in time in the audio signal; a controller configured for analyzing the audio signal and for determining, which portion of the audio signal is the firs
    Type: Application
    Filed: March 1, 2019
    Publication date: August 29, 2019
    Inventors: Sascha Disch, Martin DIETZ, Markus MULTRUS, Guillaume FUCHS, Emmanuel RAVELLI, Matthias NEUSINGER, Markus SCHNELL, Benjamin SCHUBERT, Bernhard GRILL
  • Publication number: 20190259405
    Abstract: An apparatus for processing an audio signal includes a configurable first audio signal processor for processing the audio signal in accordance with different configuration settings to obtain a processed audio signal, wherein the apparatus is adapted so that different configuration settings result in different sampling rates of the processed audio signal. The apparatus furthermore includes n analysis filter bank having a first number of analysis filter bank channels, a synthesis filter bank having a second number of synthesis filter bank channels, a second audio processor being adapted to receive and process an audio signal having a predetermined sampling rate, and a controller for controlling the first number of analysis filter bank channels or the second number of synthesis filter bank channels in accordance with a configuration setting.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Markus Lohwasser, Manuel Jander, Max Neuendorf, Ralf Geiger, Markus Schnell, Matthias Hildenbrand, Tobias Chalupka
  • Patent number: 10373625
    Abstract: According to an aspect of the present invention an encoder for encoding an audio signal has an analyzer configured for deriving prediction coefficients and a residual signal from a frame of the audio signal. The encoder has a formant information calculator configured for calculating a speech related spectral shaping information from the prediction coefficients, a gain parameter calculator configured for calculating a gain parameter from an unvoiced residual signal and the spectral shaping information and a bitstream former configured for forming an output signal based on an information related to a voiced signal frame, the gain parameter or a quantized gain parameter and the prediction coefficients.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: August 6, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Markus Multrus, Emmanuel Ravelli, Markus Schnell
  • Publication number: 20190228787
    Abstract: An encoder for encoding an audio signal has: an analyzer configured for deriving prediction coefficients and a residual signal from an unvoiced frame of the audio signal; a gain parameter calculator configured for calculating a first gain parameter information for defining a first excitation signal related to a deterministic codebook and for calculating a second gain parameter information for defining a second excitation signal related to a noise-like signal for the unvoiced frame; and a bitstream former configured for forming an output signal based on an information related to a voiced signal frame, the first gain parameter information and the second gain parameter information.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Guillaume Fuchs, Markus Multrus, Emmanuel Ravelli, Markus Schnell
  • Publication number: 20190228786
    Abstract: An apparatus for encoding a multi-channel signal including at least two channels includes a time-spectral converter for converting sequences of blocks of sampling values of the at least two channels into a frequency domain representation having sequences of blocks of spectral values for the at least two channels; a multi-channel processor for applying a joint multi-channel processing to the sequences of blocks of spectral values to obtain at least one result sequence of blocks of spectral values including information related to the at least two channels; a spectral-time converter for converting the result sequence of blocks of spectral values into a time domain representation including an output sequence of blocks of sampling values; and a core encoder for encoding the output sequence of blocks of sampling values to obtain an encoded multi-channel signal.
    Type: Application
    Filed: April 4, 2019
    Publication date: July 25, 2019
    Inventors: Guillaume FUCHS, Emmanuel RAVELLI, Markus MULTRUS, Markus SCHNELL, Stefan DOEHLA, Martin DIETZ, Goran MARKOVIC, Eleni FOTOPOULOU, Stefan BAYER, Wolfgang JAEGERS
  • Patent number: 10354662
    Abstract: An apparatus for generating an encoded signal includes: a window sequence controller for generating a window sequence information for windowing an audio or image signal, the window sequence information indicating a first window for generating a first frame of spectral values, a second window function and at least one third window function for generating a second frame of spectral values, wherein the first window function, the second window function and the one or more third window functions overlap within a multi-overlap region; a preprocessor for windowing a second block of samples corresponding to the second window function and the at least one third window functions using an auxiliary window function to acquire a second block of windowed samples, a spectrum converter for applying an aliasing-introducing transform; and a processor for processing the first frame and the second frame to acquire encoded frames of the audio or image signal.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: July 16, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Christian Helmrich, Jeremie Lecomte, Goran Markovic, Markus Schnell, Bernd Edler, Stefan Reuschl
  • Publication number: 20190198030
    Abstract: A processor for processing an audio signal has: an analyzer for deriving a window control signal from the audio signal indicating a change from a first asymmetric window to a second window, or indicating a change from a third window to a fourth asymmetric window, wherein the second window is shorter than the first window, or wherein the third window is shorter than the fourth window; a window constructor for constructing the second window using a first overlap portion of the first asymmetric window, wherein the window constructor is configured to determine a first overlap portion of the second window using a truncated first overlap portion of the first asymmetric window, or wherein the window constructor is configured to calculate a second overlap portion of the third window using a truncated second overlap portion of the fourth asymmetric window; and a windower for applying the first and second windows or the third and fourth windows to obtain windowed audio signal portions.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Guillaume FUCHS, Markus MULTRUS, Matthias NEUSINGER, Andreas NIEDERMEIER, Markus SCHNELL
  • Patent number: 10332535
    Abstract: An audio encoder for encoding an audio signal has: a first encoding processor for encoding a first audio signal portion in a frequency domain, having: a time frequency converter for converting the first audio signal portion into a frequency domain representation; an analyzer for analyzing the frequency domain representation to determine first spectral portions to be encoded with a first spectral resolution and second regions to be encoded with a second resolution; and a spectral encoder for encoding the first spectral portions with the first spectral resolution and encoding the second portions with the second resolution; a second encoding processor for encoding a second different audio signal portion in the time domain; a controller for analyzing and determining, which portion of the audio signal is the first audio signal portion encoded in the frequency domain and which portion is the second audio signal portion encoded in the time domain; and an encoded signal former for forming an encoded audio signal havi
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: June 25, 2019
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Martin Dietz, Markus Multrus, Guillaume Fuchs, Emmanuel Ravelli, Matthias Neusinger, Markus Schnell, Benjamin Schubert, Bernhard Grill
  • Publication number: 20190189143
    Abstract: An audio encoder for encoding an audio signal has: a first encoding processor for encoding a first audio signal portion in a frequency domain, having: a time frequency converter for converting the first audio signal portion into a frequency domain representation; an analyzer for analyzing the frequency domain representation to determine first spectral portions to be encoded with a first spectral resolution and second regions to be encoded with a second resolution; and a spectral encoder for encoding the first spectral portions with the first spectral resolution and encoding the second portions with the second resolution; a second encoding processor for encoding a second different audio signal portion in the time domain; a controller for analyzing and determining, which portion of the audio signal is the first audio signal portion encoded in the frequency domain and which portion is the second audio signal portion encoded in the time domain; and an encoded signal former for forming an encoded audio signal havi
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Sascha DISCH, Martin DIETZ, Markus MULTRUS, Guillaume FUCHS, Emmanuel RAVELLI, Matthias NEUSINGER, Markus SCHNELL, Benjamin SCHUBERT, Bernhard GRILL
  • Patent number: 10311886
    Abstract: An apparatus for processing an audio signal includes a configurable first audio signal processor for processing the audio signal in accordance with different configuration settings to obtain a processed audio signal, wherein the apparatus is adapted so that different configuration settings result in different sampling rates of the processed audio signal. The apparatus furthermore includes n analysis filter bank having a first number of analysis filter bank channels, a synthesis filter bank having a second number of synthesis filter bank channels, a second audio processor being adapted to receive and process an audio signal having a predetermined sampling rate, and a controller for controlling the first number of analysis filter bank channels or the second number of synthesis filter bank channels in accordance with a configuration setting.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: June 4, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Lohwasser, Manuel Jander, Max Neuendorf, Ralf Geiger, Markus Schnell, Matthias Hildenbrand, Tobias Chalupka
  • Patent number: 10304470
    Abstract: An encoder for encoding an audio signal has: an analyzer configured for deriving prediction coefficients and a residual signal from an unvoiced frame of the audio signal; a gain parameter calculator configured for calculating a first gain parameter information for defining a first excitation signal related to a deterministic codebook and for calculating a second gain parameter information for defining a second excitation signal related to a noise-like signal for the unvoiced frame; and a bitstream former configured for forming an output signal based on an information related to a voiced signal frame, the first gain parameter information and the second gain parameter information.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 28, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Markus Multrus, Emmanuel Ravelli, Markus Schnell
  • Publication number: 20190156843
    Abstract: An audio encoder for encoding an audio signal having a lower frequency band and an upper frequency band includes: a detector for detecting a peak spectral region in the upper frequency band of the audio signal; a shaper for shaping the lower frequency band using shaping information for the lower band and for shaping the upper frequency band using at least a portion of the shaping information for the lower band, wherein the shaper is configured to additionally attenuate spectral values in the detected peak spectral region in the upper frequency band; and a quantizer and coder stage for quantizing a shaped lower frequency band and a shaped upper frequency band and for entropy coding quantized spectral values from the shaped lower frequency band and the shaped upper frequency band.
    Type: Application
    Filed: September 27, 2018
    Publication date: May 23, 2019
    Inventors: Markus MULTRUS, Christian NEUKAM, Markus SCHNELL, Benjamin SCHUBERT
  • Patent number: 10262666
    Abstract: A processor for processing an audio signal has: an analyzer for deriving a window control signal from the audio signal indicating a change from a first asymmetric window to a second window, or indicating a change from a third window to a fourth asymmetric window, wherein the second window is shorter than the first window, or wherein the third window is shorter than the fourth window; a window constructor for constructing the second window using a first overlap portion of the first asymmetric window, wherein the window constructor is configured to determine a first overlap portion of the second window using a truncated first overlap portion of the first asymmetric window, or wherein the window constructor is configured to calculate a second overlap portion of the third window using a truncated second overlap portion of the fourth asymmetric window; and a windower for applying the first and second windows or the third and fourth windows to obtain windowed audio signal portions.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 16, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Markus Multrus, Matthias Neusinger, Andreas Niedermeier, Markus Schnell