Patents by Inventor Markus Seesselberg

Markus Seesselberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367134
    Abstract: The invention relates to a device for focusing a photon beam into a material. The device comprises: means for splitting the photon beam into a plurality of component beams; means for focusing the component beams at a predetermined focal depth within the material; and means for adapting the wavefronts of the component beams based at least in part on the focal depth.
    Type: Application
    Filed: May 12, 2023
    Publication date: November 16, 2023
    Inventors: Markus Seesselberg, Johannes Stock
  • Patent number: 11656432
    Abstract: A lens for a camera has a longitudinal axis, a focal length, an installation length in the direction of the longitudinal axis of less than 10 mm, a plurality of refractive optical elements and a stop with a maximum diameter. The focal length of the lens can be in the range of 25 mm to 6 mm, and the ratio of focal length to maximum diameter of the stop can be in the range of 1.4 to 8. At least one refractive optical element can be formed of a material with an Abbe number for which the absolute value of the difference between relative partial dispersion of the material and a normal relative partial dispersion at the Abbe number of the material is at least 0.05.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: May 23, 2023
    Assignee: Carl Zeiss AG
    Inventors: Friedrich Daniel Werdehausen, Hans-Juergen Dobschal, Markus Seesselberg
  • Publication number: 20220260808
    Abstract: A lens for a camera has a longitudinal axis, a focal length, an installation length in the direction of the longitudinal axis of less than 10 mm, a plurality of refractive optical elements and a stop with a maximum diameter. The focal length of the lens can be in the range of 25 mm to 6 mm, and the ratio of focal length to maximum diameter of the stop can be in the range of 1.4 to 8. At least one refractive optical element can be formed of a material with an Abbe number for which the absolute value of the difference between relative partial dispersion of the material and a normal relative partial dispersion at the Abbe number of the material is at least 0.05.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 18, 2022
    Inventors: Friedrich Daniel WERDEHAUSEN, Hans-Juergen DOBSCHAL, Markus SEESSELBERG
  • Patent number: 11249294
    Abstract: An optical system includes a scanning unit, a first lens-element group including at least a first lens element, and a focusing unit which is designed to focus beams onto a focus, wherein the focusing unit includes a second lens-element group including at least a second lens element and an imaging lens. The imaging lens further includes a pupil plane and a wavefront manipulator. The wavefront manipulator is arranged in the pupil plane of the imaging lens or in a plane that is conjugate to the pupil plane, or the scanning unit of the optical system is arranged in a plane that is conjugate to the pupil plane and the wavefront manipulator is arranged upstream of the scanning unit in the light direction. The focus of the second lens-element group lies in the pupil plane of the imaging lens in all focal positions of the focusing unit.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: February 15, 2022
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss SMS Ltd.
    Inventors: Markus Seesselberg, Vladimir Dmitriev, Joachim Welte, Uri Stern, Tomer Cohen, Erez Graitzer
  • Patent number: 11147447
    Abstract: An ophthalmic surgical microscope includes a main objective lens, through which an observation beam path passes, and a confocal optical system configured as a refractometer to determine the refraction of an eye. The optical system includes a measurement light source to generate a measurement light beam, a light detector to measure an intensity of measurement light and an optical unit to direct the measurement light beam onto the retina of the eye and to return measurement light reflected back at the retina to the light detector. The optical system includes an adaptive optical module (AOM) to modify a wavefront of the measurement beam path such that an intensity of the back-reflected measurement light changes. A spherical equivalent (SE) of the ametropia of the eye is determined based on a setting of the AOM, at which the measured intensity of the back-reflected measurement light has a maximum.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 19, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Markus Seesselberg, Christoph Hauger, Artur Hoegele, Joachim Steffen
  • Patent number: 10736501
    Abstract: An apparatus for carrying out an eye-related measurement on a person includes a device for generating a fixation target with a holographic element. To generate the fixation target, the holographic element is illuminated by a light source. As a result of the illumination, the fixation target arises as a virtual holographic object. The eye-related measurement is conducted on an eye or the eyes of the person fixating the fixation target. Information is conveyed to the person by switching between different fixation targets.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 11, 2020
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Tobias Breuninger, Markus Seesselberg, Matthias Kubitza, Frank Widulle
  • Patent number: 10736503
    Abstract: A method of determining at least one selection parameter for selecting an intraocular lens to be inserted into an eye; the method comprises reading, by a data processing system, data indicative of an axial position of at least a portion of an anterior surface of an at least partially empty capsular bag of the eye, relative to an optical axis of the eye. The method further comprises determining an axial position parameter, which is representative of the axial position of the portion of the anterior surface, depending on the data. The method further comprises determining the at least one selection parameter for selecting the intraocular lens depending on the determined position parameter.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: August 11, 2020
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Marco Wilzbach, Christoph Hauger, Markus Seesselberg, Xing Wei, Holger Matz, Anja Seiwert, Oliver Findl, Nino Hirnschall
  • Publication number: 20200029805
    Abstract: An ophthalmic surgical microscope includes a main objective lens, through which an observation beam path passes, and a confocal optical system configured as a refractometer to determine the refraction of an eye. The optical system includes a measurement light source to generate a measurement light beam, a light detector to measure an intensity of measurement light and an optical unit to direct the measurement light beam onto the retina of the eye and to return measurement light reflected back at the retina to the light detector. The optical system includes an adaptive optical module (AOM) to modify a wavefront of the measurement beam path such that an intensity of the back-reflected measurement light changes. A spherical equivalent (SE) of the ametropia of the eye is determined based on a setting of the AOM, at which the measured intensity of the back-reflected measurement light has a maximum.
    Type: Application
    Filed: July 30, 2019
    Publication date: January 30, 2020
    Inventors: Markus Seesselberg, Christoph Hauger, Artur Hoegele, Joachim Steffen
  • Patent number: 10398308
    Abstract: An apparatus for determining ametropia of an eye includes an optical assembly with a light source, a detector, a plurality of optical elements and at least one stray light stop and a controller. An illumination beam path is provided between the light source and an optical interface in order to allow illumination light generated by the light source to emerge from the optical interface. A measurement beam path is provided between the optical interface and the detector in order to supply measurement light entering through the optical interface to the detector. The measurement beam path passes through an aperture of the at least one stray light stop. A diameter of this aperture is variable or a position of this aperture along the measurement beam path is variable in order to reduce stray light at the detector.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 3, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventor: Markus Seesselberg
  • Publication number: 20190170991
    Abstract: The inventions concerns an optical system comprising a scanning unit, a first lens-element group comprising at least a first lens element, a focusing unit which is designed to focus beams onto a focus, wherein the focusing unit comprises a second lens-element group comprising at least a second lens element and an imaging lens. The imaging lens further comprises a pupil plane and a wavefront manipulator. The wavefront manipulator of the optical system is arranged in the pupil plane of the imaging lens or in a plane that is conjugate to the pupil plane of the imaging lens, or the scanning unit of the optical system is arranged in a plane that is conjugate to the pupil plane of the imaging lens and the wavefront manipulator is arranged upstream of the scanning unit in the light direction. The focus of the second lens-element group lies in the pupil plane of the imaging lens in all focal positions of the focusing unit.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Markus Seesselberg, Vladimir Dmitriev, Joachim Welte, Uri Stern, Tomer Cohen, Erez Graitzer
  • Publication number: 20190046027
    Abstract: An apparatus for carrying out an eye-related measurement on a person includes a device for generating a fixation target with a holographic element. To generate the fixation target, the holographic element is illuminated by a light source. As a result of the illumination, the fixation target arises as a virtual holographic object. The eye-related measurement is conducted on an eye or the eyes of the person fixating the fixation target. Information is conveyed to the person by switching between different fixation targets.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 14, 2019
    Inventors: Tobias Breuninger, Markus Seesselberg, Matthias Kubitza, Frank Widulle
  • Publication number: 20190046028
    Abstract: An apparatus for carrying out an eye-related measurement on a person includes a device for generating a fixation target with a holographic element. To generate the fixation target, the holographic element is illuminated by a light source. As a result of the illumination, the fixation target arises as a virtual holographic object. The eye-related measurement is conducted on an eye or the eyes of the person fixating the fixation target. Information is conveyed to the person by switching between different fixation targets.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Tobias Breuninger, Markus Seesselberg, Matthias Kubitza, Frank Widulle
  • Patent number: 10159406
    Abstract: An ophthalmic surgical apparatus including: a control device; a user interface which, at least intermittently, has data communication with the control device; a first measuring device configured for determining at least one value intraoperatively, the value being characteristic for an eye to be treated by surgery; a second measuring device configured for determining at least one value preoperatively and/or intraoperatively, the value being characteristic for the eye to be treated by surgery, and including a first computing unit which is suitable and intended, using the value determined intraoperatively and the value determined preoperatively and/or intraoperatively, for ascertaining at least one first output value which is characteristic for at least one intraocular lens to be selected, wherein the user interface at least preferably includes an output device suitable for outputting the output value or a value derived therefrom.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: December 25, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Markus Seesselberg, Marco Wilzbach
  • Publication number: 20180317765
    Abstract: A method of determining at least one selection parameter for selecting an intraocular lens to be inserted into an eye; the method comprises reading, by a data processing system, data indicative of an axial position of at least a portion of an anterior surface of an at least partially empty capsular bag of the eye, relative to an optical axis of the eye. The method further comprises determining an axial position parameter, which is representative of the axial position of the portion of the anterior surface, depending on the data. The method further comprises determining the at least one selection parameter for selecting the intraocular lens depending on the determined position parameter.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Marco WILZBACH, Christoph HAUGER, Markus SEESSELBERG, Xing WEI, Holger MATZ, Anja SEIWERT, Oliver FINDL, Nino HIRNSCHALL
  • Patent number: 10117572
    Abstract: A method of determining at least one selection parameter for selecting an intraocular lens to be inserted into an eye; the method comprises reading, by a data processing system, data indicative of an axial position of at least a portion of an anterior surface of an at least partially empty capsular bag of the eye, relative to an optical axis of the eye. The method further comprises determining an axial position parameter, which is representative of the axial position of the portion of the anterior surface, depending on the data. The method further comprises determining the at least one selection parameter for selecting the intraocular lens depending on the determined position parameter.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 6, 2018
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Marco Wilzbach, Christoph Hauger, Markus Seesselberg, Xing Wei, Holger Matz, Anja Seiwert, Oliver Findl, Nino Hirnschall
  • Patent number: 10098538
    Abstract: Imaging systems are provided allowing examination of different object regions spaced apart in a depth direction by visual microscopy and by optical coherence tomography. An axial field of view and a lateral resolution is varied depending on which object region is examined by the imaging system. The proposed imaging systems are in particular applicable for thorough examination of the human eye.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: October 16, 2018
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Christoph Hauger, Markus Seesselberg, Martin Hacker, Keith O'Hara
  • Patent number: 10048484
    Abstract: An imaging system with an imaging lens system for imaging an object into an image plane is disclosed. The imaging lens system contains an optical component for a higher depth of field, of which the refractive power is alterable and the optical effect remains rotation-symmetrical.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 14, 2018
    Assignees: Carl Zeiss AG, Carl Zeiss Meditec AG
    Inventors: Marco Pretorius, Markus Seesselberg, Artur Hoegele, Christoph Nieten, Enrico Geissler
  • Patent number: 9962076
    Abstract: Imaging systems are provided allowing examination of different object regions spaced apart in a depth direction by visual microscopy and by optical coherence tomography. An axial field of view and a lateral resolution is varied depending on which object region is examined by the imaging system. The proposed imaging systems are in particular applicable for thorough examination of the human eye.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: May 8, 2018
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Christoph Hauger, Markus Seesselberg, Martin Hacker, Keith O'Hara
  • Patent number: 9912917
    Abstract: A visualization apparatus for a surgical site includes a recording unit for recording an image of an object arranged in a focal plane of the recording unit. The recording unit has a lens having an optical axis that intersects the focal plane at a point P. An electronic image representation unit has an image surface for reproducing the recorded image and point P is reproduced at image point P?. A mirror unit has a mirror surface, which has a center point S and is arranged relative to the image surface such that the reproduced image is reflected by the mirror surface. The focal plane, image surface and mirror surface are arranged relative to one another such that an observation point B results for which the following applies: ?2 D<?1??2<+2 D; wherein: ?1=?1/d1 ?2=?1/d2 d1=distance PB d2=distance P?S+distance SB.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 6, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Markus Seesselberg, Joachim Steffen, Steffen Siegler, Christian Voigt
  • Publication number: 20170336609
    Abstract: Catadioptric eyepiece system having an exit pupil, comprising a display having a surface disposed in an object plane; optics providing a beam path from the display to the exit pupil and being configured to image a portion of the object plane into an intermediate image formed in a curved intermediate image plane; wherein the optics comprise: a lens system of positive optical power comprising at least one lens, wherein the lens system is disposed in the beam path downstream of the display and upstream of the intermediate image; a concave first mirror disposed in the beam path downstream of the intermediate image and upstream of the exit pupil; and a first beam splitter disposed in the beam path between the lens system and the first mirror and between the first mirror and the exit pupil.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 23, 2017
    Inventors: Scott LERNER, Markus SEESSELBERG, Tobias BREUNINGER, David SHAFER, Toufic JABBOUR