Patents by Inventor Markus Siebert
Markus Siebert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170084928Abstract: An electrochemical cell (10), in particular a fuel cell and/or an electrolytic cell and/or a metal-air cell, having at least one functional layer system (12), which is distinguished by the fact that at least one tubular support body (14) is formed, in which at least one tunnel-like structure (16) is formed, which adjoins the at least one functional layer system (12). A method for producing an electrochemical cell (10).Type: ApplicationFiled: September 14, 2016Publication date: March 23, 2017Inventors: Friedrich Kneule, Imke Heeren, Markus Siebert, Martin Schubert, Thomas Loibl, Inga Schellenberg
-
Patent number: 8182665Abstract: A sensor element is provided for gas sensors, in particular to determine particles in gas mixtures, the sensor element including at least one electrochemical measuring element exposed to the gas mixture to be determined, and at least one temperature-measuring element integrated into the sensor element. The temperature-measuring element includes a resistor track, which has an electric resistance of less than 180 Ohm at 0° C. The resistor track may thus be produced by thin-foil technology, such as screen printing, for example.Type: GrantFiled: October 20, 2006Date of Patent: May 22, 2012Assignee: Robert Bosch GmbHInventors: Lutz Dorfmueller, Sabine Roesch, Detlef Heimann, Stefan Rodewald, Helmut Marx, Henrico Runge, Harald Guenschel, Ralf Schmidt, Markus Siebert, Lothar Diehl, Thorsten Ochs, Juergen Sindel, Juergen Ruth, Andreas Schaak, Henrik Schittenhelm
-
Patent number: 8038933Abstract: A gas sensor is for determining at least one physical quantity of a gas, e.g., an exhaust gas of an internal combustion engine, the gas sensor having a sensor element that is fixed in a housing of the gas sensor by a seal assembly. The seal assembly includes a sealing element, which has a ceramic and/or a metallic material. After the heat treatment, the sealing element has a maximum decrease in volume of 5 percent, or an increase in volume, based on the volume of the sealing element prior to the heat treatment.Type: GrantFiled: July 26, 2007Date of Patent: October 18, 2011Assignee: Robert Bosch GmbHInventors: Helmut Weyl, Claudio De La Prieta, Andreas Hachtel, Thomas Schulte, Thomas Egner, Juergen Wilde, Markus Siebert, Michael Kupzig, Uwe Glanz, Rainer Mueller, Leonore Schwegler, Petra Kuschel, Andreas Pesch
-
Patent number: 7886578Abstract: A sensor element for gas sensors for determining the concentration of particulates in gas mixtures, in particular soot sensors having at least one first measuring electrode applied to an electrically insulating substrate and at least one second measuring electrode, a voltage being applicable to the first and second measuring electrodes. The first measuring electrode is at least partly covered by a porous material open to diffusion of the particles to be determined.Type: GrantFiled: July 18, 2005Date of Patent: February 15, 2011Assignee: Robert Bosch GmbHInventors: Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm
-
Patent number: 7872466Abstract: A sensor for determining the concentration of particles in gases, in particular of soot particles, has at least one substrate element, and a measuring area between at least one first and one second measuring electrode, the two measuring electrodes being configured so that by applying a voltage between the measuring electrodes, an asymmetric electric field is formed on the measuring area. The sides of the first and second measuring electrodes, facing one another, may not be parallel to one another, for example. Furthermore, at least one measuring electrode may have a structure along the side facing the other measuring electrode or along the finger electrodes.Type: GrantFiled: October 17, 2005Date of Patent: January 18, 2011Assignee: Robert Bosch GmbHInventors: Lutz Dorfmueller, Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm, Gerd Teike
-
Publication number: 20090217737Abstract: A sensor element is provided for gas sensors, in particular to determine particles in gas mixtures, the sensor element including at least one electrochemical measuring element exposed to the gas mixture to be determined, and at least one temperature-measuring element integrated into the sensor element. The temperature-measuring element includes a resistor track, which has an electric resistance of less than 180 Ohm at 0° C. The resistor track may thus be produced by thin-foil technology, such as screen printing, for example.Type: ApplicationFiled: October 20, 2006Publication date: September 3, 2009Applicant: ROBERT BOSCH GMBHInventors: Lutz Dorfmueller, Sabine Roesch, Detlef Heimann, Stefan Rodewald, Helmut Marx, Henrico Runge, Harald Guenschel, Ralf Schmidt, Markus Siebert, Lothar Diehl, Thorsten Ochs, Juergen Sindel, Juergen Ruth, Andreas Schaak, Henrik Schittenhelm
-
Publication number: 20080047847Abstract: A sensor element for gas sensors for determining the concentration of particulates in gas mixtures, in particular soot sensors having at least one first measuring electrode applied to an electrically insulating substrate and at least one second measuring electrode, a voltage being applicable to the first and second measuring electrodes. The first measuring electrode is at least partly covered by a porous material open to diffusion of the particles to be determined.Type: ApplicationFiled: July 18, 2005Publication date: February 28, 2008Applicant: ROBERT BOSCH GMBHInventors: Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm
-
Publication number: 20080024111Abstract: A sensor for determining the concentration of particles in gases, in particular of soot particles, has at least one substrate element, and a measuring area between at least one first and one second measuring electrode, the two measuring electrodes being configured so that by applying a voltage between the measuring electrodes, an asymmetric electric field is formed on the measuring area. The sides of the first and second measuring electrodes, facing one another, may not be parallel to one another, for example. Furthermore, at least one measuring electrode may have a structure along the side facing the other measuring electrode or along the finger electrodes.Type: ApplicationFiled: October 17, 2005Publication date: January 31, 2008Inventors: Lutz Dorfmueller, Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm, Gerd Teike
-
Publication number: 20070266735Abstract: A gas sensor is for determining at least one physical quantity of a gas, e.g., an exhaust gas of an internal combustion engine, the gas sensor having a sensor element that is fixed in a housing of the gas sensor by a seal assembly. The seal assembly includes a sealing element, which has a ceramic and/or a metallic material. After the heat treatment, the sealing element has a maximum decrease in volume of 5 percent, or an increase in volume, based on the volume of the sealing element prior to the heat treatment.Type: ApplicationFiled: July 26, 2007Publication date: November 22, 2007Inventors: Helmut Weyl, Claudio Prieta, Andreas Hachtel, Thomas Schulte, Thomas Egner, Juergen Wilde, Markus Siebert, Michael Kupzig, Uwe Glanz, Rainer Mueller, Leonore Schwegler, Petra Kuschel, Andreas Pesch
-
Patent number: 7258770Abstract: A gas sensor is for determining at least one physical quantity of a gas, e.g., an exhaust gas of an internal combustion engine, the gas sensor having a sensor element that is fixed in a housing of the gas sensor by a seal assembly. The seal assembly includes a sealing element, which has a ceramic and/or a metallic material. After the heat treatment, the sealing element has a maximum decrease in volume of 5 percent, or an increase in volume, based on the volume of the sealing element prior to the heat treatment.Type: GrantFiled: May 23, 2003Date of Patent: August 21, 2007Assignee: Robert Bosch GmbHInventors: Helmut Weyl, Claudio De La Prieta, Andreas Hachtel, Thomas Schulte, Thomas Egner, Juergen Wilde, Markus Siebert, Michael Kupzig, Uwe Glanz, Rainer Mueller, Leonore Schwegler, Petra Kuschel, Andreas Pesch
-
Publication number: 20040040843Abstract: A gas sensor is for determining at least one physical quantity of a gas, e.g., an exhaust gas of an internal combustion engine, the gas sensor having a sensor element that is fixed in a housing of the gas sensor by a seal assembly. The seal assembly includes a sealing element, which has a ceramic and/or a metallic material. After the heat treatment, the sealing element has a maximum decrease in volume of 5 percent, or an increase in volume, based on the volume of the sealing element prior to the heat treatment.Type: ApplicationFiled: May 23, 2003Publication date: March 4, 2004Inventors: Helmut Weyl, Claudio De La Prieta, Andreas Hachtel, Thomas Schulte, Thomas Egner, Juergen Wilde, Markus Siebert, Michael Kupzig, Uwe Glanz, Rainer Mueller, Leonore Schwegler, Petra Kuschel, Andreas Pesch
-
Publication number: 20040011453Abstract: A ceramic green body made up of at least two ceramic green sheets that are glued together with a liquid adhesive is described. Further, a method of manufacturing a ceramic green body of this type is described, the surface of a first ceramic green sheet initially being provided at least in sections and at least on one side with the liquid adhesive, and the first ceramic green sheet being subsequently glued to a second ceramic green sheet. Finally, it is proposed to manufacture a ceramic body using this ceramic green body, which may be used, for example, in planar, ceramic exhaust gas sensors, or in ceramic multilayer hybrids as circuit carriers. To this end, after being glued, the ceramic green body is subjected to a heat treatment, during which the polymer matrix of the ceramic green sheets is first at least largely thermally decomposed and/or evaporated, and the body that remains is subsequently sintered.Type: ApplicationFiled: July 10, 2003Publication date: January 22, 2004Inventors: Andreas Roosen, Thomas Schulte, Markus Siebert, Stephan Zoellner