Patents by Inventor Markus Vester

Markus Vester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10222443
    Abstract: A method for generating motion information for an at least partially moving examination region includes outputting at least one first excitation signal with a first frequency band. The first excitation signal is picked up with a receive coil arrangement of a magnetic resonance system. The at least one coil of the receive coil arrangement is configured to pick up a receive frequency band that includes the first frequency band. At least one item of motion information for the examination region is determined from the picked up first excitation signal.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: March 5, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Bollenbeck, Georg Pirkl, Robert Rehner, Peter Speier, Markus Vester
  • Patent number: 10197644
    Abstract: A local transmit coil for a magnetic resonance tomograph is provided. The local transmit coil includes a signal transmission device for signal transmission to the magnetic resonance tomograph, and a transmission antenna for generating a magnetic excitation field. The local transmit coil further includes an evaluation device for monitoring a function of the local transmit coil. The evaluation device is configured to transmit a status signal relating to the local transmit coil via the signal transmission device.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: February 5, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Nikolaus Demharter, Markus Vester, Volker Weißenberger
  • Patent number: 10197646
    Abstract: A magnetic resonance imaging (MRI) system includes a plurality of transmitters to generate a parallel transmission radio frequency (RF) pulse, an array of coils coupled to the plurality of transmitters to apply the parallel transmission RF pulse to a subject, and a decoupling system connected to the plurality of transmitters and the array of coils. The decoupling system includes a plurality of hybrid couplers, each hybrid coupler of the plurality of hybrid couplers being coupled to a respective pair of the plurality of transmitters and to a respective pair of the array of coils. The plurality of hybrid couplers are configured to diagonalize an impedance matrix of the plurality of coils.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 5, 2019
    Assignees: Siemens Aktiengesellschaft, Massachusetts Institute of Technology, Massachusetts General Hospital Corporation
    Inventors: Elfar Adalsteinsson, Luca Daniel, Bastien Guerin, Boris Keil, Zohaib Mahmood, Markus Vester, Lawrence Wald
  • Patent number: 10175316
    Abstract: Gradient coil arrangement for a magnetic resonance apparatus has multiple sub-coils formed by coil conductors on a common substrate, and the gradient coil arrangement has at least one damping producer that damps voltage overshoots occurring due to capacitive and/or inductive coupling between two sub-coils as a result of interfering frequencies in the wanted signal for at least one of the sub-coils affected. The damping producer is directly applied to the coil conductor of at least one of the sub-coils involved in the capacitive and/or inductive coupling.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: January 8, 2019
    Assignee: Siemans Aktiengesellschaft
    Inventors: Sascha Fath, Marcel Rischke, Markus Vester
  • Publication number: 20190004127
    Abstract: System and methods are provided for a passive transmitting antenna for a magnetic resonance tomography system and to a system including a passive transmitting antenna and magnetic resonance tomography system and a method for operation. The passive transmitting antenna includes a tuning apparatus with a tuning element. The tuning apparatus is configured to perform a tuning of the passive transmitting antenna as a function of a relative position of the passive transmitting antenna in a patient tunnel of the magnetic resonance tomography system.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 3, 2019
    Inventors: Stephan Biber, Markus Vester
  • Patent number: 10168399
    Abstract: The embodiments relate to a method and field probes for measuring a static and/or in particular a dynamic magnetic field in an imaging magnetic resonance tomography system, wherein the field probe includes a body surrounded by a coil. The coil includes a middle or center winding section and at least one or two outer winding sections.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 1, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Robert Rehner, Markus Vester
  • Publication number: 20180364322
    Abstract: A radio-frequency shielding unit for shielding a radio-frequency antenna unit of a magnetic resonance apparatus and a magnetic resonance apparatus are provided. The radio-frequency shielding unit includes a support layer, a first conducting layer, an insulating layer, and a second conducting layer. The first conducting layer is arranged between the support layer and the insulating layer, and the insulating layer is arranged between the first conducting layer and the second conducting layer.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: Ludwig Eberler, Jürgen Nistler, Markus Vester
  • Publication number: 20180364320
    Abstract: The disclosure relates to a local coil with a device for providing a first mixed frequency signal and a second mixed frequency signal by a first auxiliary frequency signal and a second auxiliary frequency signal. The device has an auxiliary mixer configured to generate the second mixed frequency signal from the first auxiliary frequency signal and the second auxiliary frequency signal. The local coil has a signal input including a first signal connection to the device. The local coil is configured to jointly receive the first auxiliary frequency signal and the second auxiliary frequency signal by way of the signal input and supply them to the device by way of the first signal connection.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 20, 2018
    Inventors: Jan Bollenbeck, Ralph Oppelt, Robert Rehner, Markus Vester
  • Patent number: 10145912
    Abstract: An arrangement for detuning a receive antenna, a detunable magnetic resonance coil, and a magnetic resonance device having a detunable magnetic resonance coil are provided. The arrangement includes a receive antenna having at least one first capacitance, wherein radiofrequency signals from a magnetic resonance examination may be received by way of the receive antenna. The arrangement furthermore includes a switchable detuning circuit containing the first capacitance switched to form an oscillating circuit and a first inductance, and a switching device having a first and a second connection point to deliver a voltage between the first and a second connection point, and one or more transistors. The switching device switches the oscillating circuit to a high impedance level with aid of the one or more transistors on delivery of a positive voltage to the first connection point, preventing a radiofrequency signal from being received by way of the receive antenna.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: December 4, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus Huber, Robert Rehner, Markus Vester
  • Patent number: 10145918
    Abstract: A method for emitting a sequence of high frequency pulses that may have different envelopes in a magnetic resonance tomography system is provided. A digital instruction signal that specifies the envelope for the high frequency pulses that are to be emitted is received. A digital control signal is transmitted to a high frequency unit for generating high frequency pulses, depending on the instruction signal. A test signal that allows notification of a current overload situation is received. The current control signal is reduced if the test signal indicates an overload situation.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 4, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Nikolaus Demharter, Klaus Huber, Claus Seisenberger, Thorsten Speckner, Markus Vester, Christian Wünsch
  • Patent number: 10132886
    Abstract: An MR device includes at least one body coil for generating a B1 magnetic field and at least one radiofrequency line routed through the B1 magnetic field. The at least one radiofrequency line has at least one frequency filter for blocking a voltage induced by the B1 magnetic field. At least one section of the radiofrequency line routed through the B1 magnetic field is embodied in printed circuit board technology on at least one printed circuit board, and information-carrying signals may be transmitted over the at least one radiofrequency line on a different frequency than the frequency of the voltage induced by the B1 magnetic field.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: November 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stephan Biber, Andreas Fackelmeier, Markus Vester
  • Publication number: 20180329003
    Abstract: An apparatus and a method for detecting an antenna coil with a non-active detuning apparatus are provided. The apparatus has a transmitter, an antenna, an amplitude meter, and a controller. The controller actuates the transmitter such that the transmitter emits radio-frequency signals with different predetermined amplitudes via the antenna. The controller acquires testing amplitudes with the amplitude meter as a function of the emitted signal and determines a testing relationship between the predetermined amplitudes and the acquired testing amplitudes. If the determined testing relationship deviates from a predetermined reference relationship, a signal is output.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: Jürgen Nistler, Markus Vester, Christian Wünsch
  • Publication number: 20180321340
    Abstract: A coil arrangement is for transmitting high frequency radiation. In an embodiment, the coil arrangement includes a transmission coil with a planar design and a passive, tubular part-body coil. The part-body coil is designed to radially enclose an examination volume relative to a direction. The examination volume includes a part of a patient's body. Furthermore, the part-body coil and the transmission coil are galvanically decoupled, and at the same time the part-body coil and the transmission coil are inductively coupled. The transmission coil is designed, by way of an emitted first high frequency radiation, to excite the part-body coil inductively, causing an enforced electromagnetic oscillation. The part-body coil emits second high frequency radiation in the event of an enforced electromagnetic oscillation. The coil arrangement of an embodiment can be used in a magnetic resonance unit without an integrated high frequency unit.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 8, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Stephan BIBER, Markus VESTER
  • Publication number: 20180299522
    Abstract: A device for recovering a temporal reference in a free-running magnetic resonance tomography (MRT) receive chain includes a time reference encoder and a time reference decoder. The time reference encoder is configured to generate a modulation signal as a function of a reference clock, where the modulation signal is configured for a correlation with a temporal resolution less than a maximum predetermined phase deviation and a maximum that may clearly be identified. The time reference decoder is configured to receive, via the first signal input, a receive signal as a function of the modulation signal, perform a correlation with a reference signal, and generate a signal as a function of a temporal reference of the modulation signal in the receive signal in relation to the reference signal.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Inventors: Stephan Biber, Jan Bollenbeck, Sven Heggen, Martin Nisznansky, Markus Vester
  • Patent number: 10101415
    Abstract: A method for operating a magnetic resonance apparatus by a safety unit, taking into account persons fitted with an implant, a safety unit, a safety system, a magnetic resonance apparatus, and a computer program product are provided. The magnetic resonance apparatus includes a first part and a second part. The first part is operated separately from the second part and includes the safety unit. During an examination of a person fitted with an implant, the safety unit checks that the magnetic resonance apparatus, in a restricted operating mode, is complying with implant-conformant limit values.
    Type: Grant
    Filed: April 15, 2017
    Date of Patent: October 16, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester, Swen Campagna
  • Patent number: 10094894
    Abstract: An arrangement includes a superconducting split ring resonator, a cryostat, and a copper coil. The resonator is arranged in the cryostat and includes at least one ring-shaped conductor made of a superconducting material and including an opening and a taper. The copper coil may be used to transmit a MRI excitation signal. This signal causes a current to be induced in the conductor that leads to the breakdown of the superconductivity. The conductor is detuned and therefore no longer develops an interfering effect. It is possible for the effect of the breakdown of superconductivity to be used for detuning in a targeted manner. After the transmission is complete, the conductor returns into the superconducting state and acts as a superconducting reception antenna for the MRI measurement signal. The copper coil is inductively coupled to the conductor and configured to read out the signal induced in the conductor.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 9, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Fackelmeier, Sebastian Martius, Robert Rehner, Christopher Stumpf, Markus Vester
  • Patent number: 10031192
    Abstract: An antenna apparatus provides for receiving magnetic resonance signals from an examination object during magnetic resonance imaging using a magnetic resonance device. The antenna apparatus includes a resonator with a plurality of electrically conductive conductor loops, which are each interrupted by a number of electrically insulating slits. The antenna apparatus further includes a carrier substrate for holding the conductor loops and a cable connection apparatus having a number of shielding apparatuses. At least one of the number of shielding apparatuses provides a conductive coupling to a virtual ground of at least one conductor loop.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: July 24, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Fackelmeier, Sebastian Martius, Markus Vester
  • Patent number: 10018691
    Abstract: In a method, by a magnetic resonance device, a transmit B1 field map is determined for a region, a plurality of MR images of at least one part of the region are acquired using transmitter settings differing from each other, and signal intensities of individual pixels measured by the MR images are interpolated by the transmit B1 field map. A correction of the signal intensities may also be effected by carrying out a receive B1 correction by a spatial mirroring of the transmit B1 field map on a symmetry plane of a measured object. A magnetic resonance device is used to carry out the method. The method may be applied, for example, in medical diagnostics.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: July 10, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Köhler, Wilfried Landschütz, Jürgen Nistler, Markus Vester
  • Patent number: 9989603
    Abstract: The embodiments relate to a method, an MRI device, and a circuit for a magnetic resonance imaging device that includes at least one transmission coil for transmitting a magnetic field. The circuit includes a hybrid coupler and at least one phase shifter arranged in the transmission path between an amplifier and at least one transmission coil of the magnetic resonance imaging device.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 5, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wolfgang Renz, Markus Vester
  • Patent number: 9983280
    Abstract: A local coil for an MRI system includes a signal antenna to receive a magnetic resonance signal and a tuning/detuning circuit to subject the signal antenna part to switch control according to a control signal. The tuning/detuning circuit is connected to the signal antenna part. The tuning/detuning circuit includes a control signal interface, a resonant circuit and an AC/DC conversion circuit. The control signal interface receives the control signal. The resonant circuit includes a diode. The AC/DC conversion circuit converts an alternating current generated by an electromagnetic wave to a direct current. The AC/DC conversion circuit is connected in series with the diode. A small detuning control current may be used, and detuning control circuitry may be reduced.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 29, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jia Heng Tan, Tong Tong, Markus Vester, JianMin Wang