Patents by Inventor Marlon Edward Menezes

Marlon Edward Menezes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045216
    Abstract: Structures for forming an optical feature and methods for forming the optical feature are disclosed. In some embodiments, the structure comprises a patterned layer comprising a pattern corresponding to the optical feature; a base layer; and an intermediate layer bonded to the patterned layer and the base layer.
    Type: Application
    Filed: April 21, 2022
    Publication date: February 8, 2024
    Inventors: Marlon Edward MENEZES, Vikramjit SINGH, Frank Y. XU
  • Publication number: 20230341692
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Application
    Filed: May 18, 2023
    Publication date: October 26, 2023
    Inventors: Jeffrey Dean SCHMULEN, Neal Paul RICKS, Samarth BHARGAVA, Kevin MESSER, Victor Kai LIU, Matthew Grant DIXON, Xiaopei DENG, Marlon Edward MENEZES, Shuqiang YANG, Vikramjit SINGH, Kang LUO, Frank Y. XU
  • Patent number: 11693246
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Publication number: 20220283371
    Abstract: An augmented reality device includes a projector, projector optics optically coupled to the projector, and an eyepiece optically coupled to the projector optics. The eyepiece includes an eyepiece waveguide characterized by lateral dimensions and an optical path length difference as a function of one or more of the lateral dimensions.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 8, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. Tekolste, Ryan Jason Ong, Victor Kai Liu, Samarth Bhargava, Christophe Peroz, Vikramjit Singh, Marlon Edward Menezes, Shuqiang Yang, Frank Y. Xu
  • Patent number: 11215744
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: January 4, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Publication number: 20210341744
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 4, 2021
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Patent number: 11067808
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: July 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Publication number: 20210080635
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Application
    Filed: November 6, 2020
    Publication date: March 18, 2021
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Patent number: 10830936
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 10, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Patent number: 10823894
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: November 3, 2020
    Assignee: Magic Leaps, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20200041712
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20200033604
    Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 30, 2020
    Inventors: Jeffrey Dean Schmulen, Neal Paul Ricks, Samarth Bhargava, Kevin Messer, Victor Kai Liu, Matthew Grant Dixon, Xiaopei Deng, Marlon Edward Menezes, Shuqiang Yang, Vikramjit Singh, Kang Luo, Frank Y. Xu
  • Publication number: 20190383984
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Patent number: 10481317
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Patent number: 10436968
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: October 8, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Patent number: 10371876
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 6, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Publication number: 20180329132
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Application
    Filed: July 23, 2018
    Publication date: November 15, 2018
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Publication number: 20180299607
    Abstract: In some embodiments, compositions and methods comprising reflective flowable materials, e.g., reflective liquids including reflective inks and/or liquid metals, are described. In some embodiments, a surface is contacted with a reflective flowable material, thereby forming a reflective layer on the surface. In some embodiments, the surface is a surface of a waveguide, for example a waveguide for a display device, and the flowable material coats surfaces of protrusions on the surface to form reflective diffractive optical elements. Some embodiments include a display device comprising a reflective layer of reflective flowable material.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 18, 2018
    Inventors: Marlon Edward Menezes, Jeffrey Dean Schmulen, Neal Paul Ricks, Victor Kai Liu, Zongxing Wang, David Carl Jurbergs
  • Publication number: 20180059297
    Abstract: A method of manufacturing a waveguide having a combination of a binary grating structure and a blazed grating structure includes cutting a substrate off-axis, depositing a first layer on the substrate, and depositing a resist layer on the first layer. The resist layer includes a pattern. The method also includes etching the first layer in the pattern using the resist layer as a mask. The pattern includes a first region and a second region. The method further includes creating the binary grating structure in the substrate in the second region and creating the blazed grating structure in the substrate in the first region.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Christophe Peroz, Mauro Melli, Vikramjit Singh, David Jurbergs, Jeffrey Dean Schmulen, Zongxing Wang, Shuqiang Yang, Frank Y. Xu, Kang Luo, Marlon Edward Menezes, Michael Nevin Miller
  • Publication number: 20020144783
    Abstract: A structure and method which substantially reduce the number of run-in substrates that have to be used in a high temperature (550° C. or greater) processing environment is presented. A barrier to conductive heat transfer is provided between a process gas distribution faceplate and its process chamber support. This allows the gas distribution faceplate to thermally float and substantially reduces the temperature transients in the faceplate, which can cause thermal (temperature) transients when wafer processing is begun. The present configuration uses a thermal separation assembly to substantially block conductive heat transfer to the cold processing chamber, by using a Vespel gasket or stainless steel washers and thereby reduces the thermal gradient experienced by the gas distribution faceplate. As a result of the improved thermal uniformity, the number of run-in wafer that need to be used is reduced by 80 to 95%.
    Type: Application
    Filed: April 5, 2001
    Publication date: October 10, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Truc Tran, Ramanujapuram Anandampillai Srinivas, Hong Bee Teoh, A vgerinos Jerry Gelatos, Marlon Edward Menezes, Vicky Uyen Nguyen, Yehuda Demayo, Rommel Ruiz