Patents by Inventor Marnix Tack
Marnix Tack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11335798Abstract: An Enhancement Mode (e-mode) Metal Insulator Semiconductor (MIS) High Electron Mobility Transistor (HEMT), or EMISHEMT, with GaN channel regrowth under a gate area, is described. The EMISHEMT with GaN channel regrowth under a gate area provides a normally-off device with a suitably high and stable threshold voltage, while providing a low gate leakage current. A channel layer provides a 2DEG and associated low on-resistance, while a channel-material layer extends through an etched recess and into the channel layer, and disrupts the 2DEG locally to enable the normally-off operation.Type: GrantFiled: January 6, 2020Date of Patent: May 17, 2022Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Peter Moens, Piet Vanmeerbeek, Abhishek Banerjee, Marnix Tack
-
Publication number: 20210210627Abstract: An Enhancement Mode (e-mode) Metal Insulator Semiconductor (MIS) High Electron Mobility Transistor (HEMT), or EMISHEMT, with GaN channel regrowth under a gate area, is described. The EMISHEMT with GaN channel regrowth under a gate area provides a normally-off device with a suitably high and stable threshold voltage, while providing a low gate leakage current. A channel layer provides a 2DEG and associated low on-resistance, while a channel-material layer extends through an etched recess and into the channel layer, and disrupts the 2DEG locally to enable the normally-off operation.Type: ApplicationFiled: January 6, 2020Publication date: July 8, 2021Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Peter MOENS, Piet VANMEERBEEK, Abhishek BANERJEE, Marnix TACK
-
Patent number: 10797153Abstract: A process of forming an electronic device can include forming a channel layer overlying a substrate and forming a barrier layer overlying the channel layer. In an embodiment, the process can further include forming a p-type semiconductor layer over the barrier layer, patterning the p-type semiconductor layer to define at least part of a gate electrode of a transistor structure, and forming an access region layer over the barrier layer. In another embodiment, the process can further include forming an etch-stop layer over the barrier layer, forming a sacrificial layer over the etch-stop layer, patterning the etch-stop and sacrificial layers to define a gate region, forming an access region layer over the barrier layer after patterning the etch-stop and sacrificial layers, and forming a p-type semiconductor layer within the gate region.Type: GrantFiled: July 2, 2018Date of Patent: October 6, 2020Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Abhishek Banerjee, Piet Vanmeerbeek, Peter Moens, Marnix Tack, Woochul Jeon, Ali Salih
-
Patent number: 10797152Abstract: An electronic device can include a channel layer; an access region having an aluminum content substantially uniform or increasing with distance from the channel layer; and a gate dielectric layer overlying and contacting the channel layer. A process of forming an electronic device can include providing a substrate and a channel layer of a III-V semiconductor material over the substrate; forming a masking feature over the channel layer; and forming an access region over the channel layer. In an embodiment, the channel layer can include GaN, and the access region has an aluminum content that is substantially uniform or increases with distance from the channel layer. In another embodiment, the process can include removing at least a portion the masking feature and forming a gate dielectric layer over the channel layer. A dielectric film of the masking feature or the gate dielectric layer contacts the channel layer.Type: GrantFiled: June 4, 2018Date of Patent: October 6, 2020Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Abhishek Banerjee, Piet Vanmeerbeek, Peter Moens, Marnix Tack
-
Publication number: 20200006521Abstract: A process of forming an electronic device can include forming a channel layer overlying a substrate and forming a barrier layer overlying the channel layer. In an embodiment, the process can further include forming a p-type semiconductor layer over the barrier layer, patterning the p-type semiconductor layer to define at least part of a gate electrode of a transistor structure, and forming an access region layer over the barrier layer. In another embodiment, the process can further include forming an etch-stop layer over the barrier layer, forming a sacrificial layer over the etch-stop layer, patterning the etch-stop and sacrificial layers to define a gate region, forming an access region layer over the barrier layer after patterning the etch-stop and sacrificial layers, and forming a p-type semiconductor layer within the gate region.Type: ApplicationFiled: July 2, 2018Publication date: January 2, 2020Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Abhishek BANERJEE, Piet VANMEERBEEK, Peter MOENS, Marnix TACK, Woochul JEON, Ali SALIH
-
Publication number: 20190371909Abstract: An electronic device can include a channel layer; an access region having an aluminum content substantially uniform or increasing with distance from the channel layer; and a gate dielectric layer overlying and contacting the channel layer. A process of forming an electronic device can include providing a substrate and a channel layer of a III-V semiconductor material over the substrate; forming a masking feature over the channel layer; and forming an access region over the channel layer. In an embodiment, the channel layer can include GaN, and the access region has an aluminum content that is substantially uniform or increases with distance from the channel layer. In another embodiment, the process can include removing at least a portion the masking feature and forming a gate dielectric layer over the channel layer. A dielectric film of the masking feature or the gate dielectric layer contacts the channel layer.Type: ApplicationFiled: June 4, 2018Publication date: December 5, 2019Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Abhishek BANERJEE, Piet VANMEERBEEK, Peter MOENS, Marnix TACK
-
Patent number: 9929261Abstract: An electronic device can include a low-side HEMT including a segmented gate electrode; and a high-side HEMT coupled to the low-side HEMT, wherein the low-side and high voltage HEMTs are integrated within a same semiconductor die. In another aspect, an electronic device can include a source electrode; a low-side HEMT; a high-side HEMT coupled to the low-side HEMT; and a resistive element. In an embodiment, the resistive element can be coupled to the source electrode and a gate electrode of the high voltage HEMT, and in another embodiment, the resistive element can be coupled to the source electrode and a drain of the low-side HEMT. A process of forming an electronic device can include forming a channel layer over a substrate; and forming a gate electrode over the channel layer. The gate electrode can be a segmented gate electrode of a HEMT.Type: GrantFiled: April 7, 2016Date of Patent: March 27, 2018Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Peter Moens, Jaume Roig-Guitart, Marnix Tack, Johan Camiel Julia Janssens
-
ELECTRONIC DEVICE INCLUDING A HEMT WITH A SEGMENTED GATE ELECTRODE AND A PROCESS OF FORMING THE SAME
Publication number: 20170294530Abstract: An electronic device can include a low-side HEMT including a segmented gate electrode; and a high-side HEMT coupled to the low-side HEMT, wherein the low-side and high voltage HEMTs are integrated within a same semiconductor die. In another aspect, an electronic device can include a source electrode; a low-side HEMT; a high-side HEMT coupled to the low-side HEMT; and a resistive element. In an embodiment, the resistive element can be coupled to the source electrode and a gate electrode of the high voltage HEMT, and in another embodiment, the resistive element can be coupled to the source electrode and a drain of the low-side HEMT. A process of forming an electronic device can include forming a channel layer over a substrate; and forming a gate electrode over the channel layer. The gate electrode can be a segmented gate electrode of a HEMT.Type: ApplicationFiled: April 7, 2016Publication date: October 12, 2017Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Peter MOENS, Jaume ROIG-GUITART, Marnix TACK, Johan Camiel Julia JANSSENS -
Patent number: 8648398Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: GrantFiled: September 26, 2012Date of Patent: February 11, 2014Assignee: Semiconductor Components Industries, LLCInventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Publication number: 20130020637Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: ApplicationFiled: September 26, 2012Publication date: January 24, 2013Inventors: Juame Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 8298889Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: GrantFiled: December 10, 2008Date of Patent: October 30, 2012Assignee: Semiconductor Components Industries, LLCInventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 7989886Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.Type: GrantFiled: September 15, 2009Date of Patent: August 2, 2011Assignee: Semiconductor Components Industries, LLCInventors: Peter Moens, Marnix Tack
-
Patent number: 7915155Abstract: Semiconductor device has a substrate (50), a buried layer (55), an active area extending from a surface contact to the buried layer, an insulator (130) in a first trench extending towards the buried layer, to isolate the active area, and a second insulator (130) in a second deep trench and extending through the buried layer to isolate the buried layer and the active area from other pails of the substrate. This double trench can help reduce the area needed for the electrical isolation between the active device and the other devices. Such reduction in area can enable greater integration or more cells in a multi cell super-MOS device, and so improve performance parameters such as Ron. The double trench can be manufactured using a first mask to etch both trenches at the same time, and subsequently using a second mask to etch the second deep trench deeper.Type: GrantFiled: January 4, 2010Date of Patent: March 29, 2011Assignee: Semiconductor Components Industries, L.L.C.Inventors: Peter Moens, Marnix Tack, Sylvie Boonen, Paul Colson
-
Publication number: 20100140698Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: ApplicationFiled: December 10, 2008Publication date: June 10, 2010Inventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 7709889Abstract: The present invention provides a semiconductor device (20) comprising a trench (5) formed in a semiconductor substrate formed of a stack (4) of layers (1,2,3), a layer (6) of a first, grown dielectric material covering sidewalls and bottom of the trench (5), the layer (6) including one or more notches (13) at the bottom of the trench (5) and one or more spacers (14) formed of a second, deposited dielectric material to fill the one or more notches (13) in the layer (6) formed of the first, grown dielectric material. The semiconductor device (20) according to the present invention shows improved breakdown voltage and on-resistance. The present invention furthermore provides a method for the manufacturing of such semiconductor devices (20).Type: GrantFiled: July 26, 2007Date of Patent: May 4, 2010Assignee: Semiconductor Components Industries, L.L.C.Inventors: Peter Moens, Filip Bauwens, Joris Baele, Marnix Tack
-
Publication number: 20100105188Abstract: Semiconductor device has a substrate (50), a buried layer (55), an active area extending from a surface contact to the buried layer, an insulator (130) in a first trench extending towards the buried layer, to isolate the active area, and a second insulator (130) in a second deep trench and extending through the buried layer to isolate the buried layer and the active area from other pails of the substrate. This double trench can help reduce the area needed for the electrical isolation between the active device and the other devices. Such reduction in area can enable greater integration or more cells in a multi cell super-MOS device, and so improve performance parameters such as Ron. The double trench can be manufactured using a first mask to etch both trenches at the same time, and subsequently using a second mask to etch the second deep trench deeper.Type: ApplicationFiled: January 4, 2010Publication date: April 29, 2010Inventors: Peter MOENS, Marnix Tack, Sylvie Boonen, Paul Colson
-
Publication number: 20100065908Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.Type: ApplicationFiled: September 15, 2009Publication date: March 18, 2010Inventors: Peter MOENS, Marnix Tack
-
Patent number: 7667270Abstract: A semiconductor device has a substrate (50), a buried layer (55), an active area extending from a surface contact to the buried layer, an insulator (130) in a first trench extending towards the buried layer, to isolate the active area, and a second insulator (130) in a second deep trench and extending through the buried layer to isolate the buried layer and the active area from other parts of the substrate. This double trench can help reduce the area needed for the electrical isolation between the active device and the other devices. Such reduction in area can enable greater integration or more cells in a multi cell super-MOS device, and so improve performance parameters such as Ron. The double trench can be manufactured using a first mask to etch both trenches at the same time, and subsequently using a second mask to etch the second deep trench deeper.Type: GrantFiled: April 7, 2006Date of Patent: February 23, 2010Assignee: Semiconductor Components Industries LLCInventors: Peter Moens, Marnix Tack, Sylvie Boonen, Paul Colson
-
Patent number: 7608510Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.Type: GrantFiled: April 24, 2006Date of Patent: October 27, 2009Assignee: AMI Semiconductor Belgium BVBAInventors: Peter Moens, Marnix Tack
-
Publication number: 20090014785Abstract: The present invention provides a semiconductor device (20) comprising a trench (5) formed in a semiconductor substrate formed of a stack (4) of layers (1,2,3), a layer (6) of a first, grown dielectric material covering sidewalls and bottom of the trench (5), the layer (6) including one or more notches (13) at the bottom of the trench (5) and one or more spacers (14) formed of a second, deposited dielectric material to fill the one or more notches (13) in the layer (6) formed of the first, grown dielectric material. The semiconductor device (20) according to the present invention shows improved breakdown voltage and on-resistance. The present invention furthermore provides a method for the manufacturing of such semiconductor devices (20).Type: ApplicationFiled: July 26, 2007Publication date: January 15, 2009Applicant: AMI Semiconductor Belgium BVBAInventors: Peter Moens, Filip Bauwens, Joris Baele, Marnix Tack