Patents by Inventor Marshall J. Jacobs

Marshall J. Jacobs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897136
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: February 13, 2024
    Assignee: GrayMatter Robotics Inc.
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Publication number: 20230126085
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Patent number: 11584005
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 21, 2023
    Assignee: GrayMatter Robotics Inc.
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Publication number: 20220371190
    Abstract: One variation of a method for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 24, 2022
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah
  • Publication number: 20220288774
    Abstract: One variation of a method s100 for autonomously scanning and processing a part includes: accessing a part model representing a part positioned in a work zone adjacent a robotic system; retrieving a sanding head translation speed; retrieving a toolpath for execution on the part defining positions, orientations, and target forces applied by the sanding head to the part. The method includes traversing the sanding head along the toolpath, at the sanding head translation speed; reading a sequence of applied forces from a force sensor coupled to the sanding head at positions along the toolpath; and deviating from the toolpath to maintain the set of applied forces within a threshold difference of a sequence of target forces along the toolpath. In one variation of the method, the robotic system executes a toolpath at a duration less than target duration by selectively varying target force and sanding head translation speed across the part.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Cheng Gong, Rishav Guha, Satyandra K. Gupta, Marshall J. Jacobs, Ariyan M. Kabir, Ceasar G. Navarro, Brual C. Shah