Patents by Inventor Martha Windrem

Martha Windrem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10779519
    Abstract: The present invention is directed to a method of assessing in vivo human glial cell response to pathogenic infection that involves providing a non-human mammal either with at least 30% of its glial cells in its corpus callosum being human glial cells and/or with at least 5% of its glial cells its brain and brain stem white matter being human glial cells, subjecting the non-human mammal to pathogenic infection and assessing the in vivo human glial cell response to pathogenic infection. A method of identifying therapeutic agents for the pathogenic infection as well as forms of the non-human mammal having a pathogenic brain infection are also disclosed.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: September 22, 2020
    Assignee: UNIVERSITY OF ROCHESTER
    Inventors: Steven A. Goldman, Martha Windrem
  • Patent number: 10190095
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 29, 2019
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem
  • Publication number: 20170159015
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 8, 2017
    Inventors: Steven A. GOLDMAN, Neeta Singh ROY, Martha WINDREM
  • Publication number: 20160264937
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Steven A. GOLDMAN, Neeta Singh ROY, Martha WINDREM
  • Patent number: 9371513
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 21, 2016
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem
  • Publication number: 20150328339
    Abstract: The present invention is directed to a method of assessing in vivo human glial cell response to pathogenic infection that involves providing a non-human mammal either with at least 30% of its glial cells in its corpus callosum being human glial cells and/or with at least 5% of its glial cells its brain and brain stem white matter being human glial cells, subjecting the non-human mammal to pathogenic infection and assessing the in vivo human glial cell response to pathogenic infection. A method of identifying therapeutic agents for the pathogenic infection as well as forms of the non-human mammal having a pathogenic brain infection are also disclosed.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 19, 2015
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Steven A. GOLDMAN, Martha WINDREM
  • Publication number: 20130004467
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Application
    Filed: June 19, 2012
    Publication date: January 3, 2013
    Applicant: University of Rochester
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem
  • Patent number: 8206699
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types. This further aspect of the present invention involves removing neurons and neuronal progenitor cells from the mixed population to produce a treated mixed population.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 26, 2012
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem
  • Patent number: 7524491
    Abstract: The present invention is directed to a non-human mammal with at least 30% of all of its glial cells in its corpus callosum being human glial cells and/or at least 5% of all of its glial cells in the white matter of its brain and/or brain stem being human glial cells. Methods of producing and using the non-human mammal are also disclosed.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: April 28, 2009
    Assignee: University of Rochester
    Inventors: Steven A. Goldman, Martha Windrem
  • Publication number: 20080206209
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types. This further aspect of the present invention involves removing neurons and neuronal progenitor cells from the mixed population to produce a treated mixed population.
    Type: Application
    Filed: April 29, 2008
    Publication date: August 28, 2008
    Applicant: CORNELL UNIVERSITY
    Inventors: Steven A. GOLDMAN, Neeta Singh ROY, Martha WINDREM
  • Publication number: 20080184378
    Abstract: The present invention is directed to a non-human mammal with at least 30% of all of its glial cells in its corpus callosum being human glial cells and/or at least 5% of all of its glial cells in the white matter of its brain and/or brain stem being human glial cells. Methods of producing and using the non-human mammal are also disclosed.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 31, 2008
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Steven A. GOLDMAN, Martha WINDREM
  • Publication number: 20030223972
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types. This further aspect of the present invention involves removing neurons and neuronal progenitor cells from the mixed population to produce a treated mixed population.
    Type: Application
    Filed: February 14, 2003
    Publication date: December 4, 2003
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem