Patents by Inventor Martijn Silvan Scheffers

Martijn Silvan Scheffers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9469848
    Abstract: The present invention relates to combinatorial variants of a parent glucoamylase that have altered properties for reducing the synthesis of condensation products during hydrolysis of starch. Accordingly, the variants of a parent glucoamylase are suitable such as for use within brewing and glucose syrup production. Also disclosed are DNA constructs encoding the variants and methods of producing the glucoamylase variants in host cells.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 18, 2016
    Assignee: DUPONT NUTRITION BIOSCIENCES APS
    Inventors: Peter Edvard Degn, Richard R. Bott, Casper Willem Vroemen, Martijn Silvan Scheffers, Wolfgang Aehle, Elin Petersen
  • Patent number: 9365871
    Abstract: A fungal ?-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the ?-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an ?-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: June 14, 2016
    Assignee: Danisco US Inc.
    Inventors: Jing Ge, Ling Hua, Martijn Silvan Scheffers, Zhongmei Tang, Marco Van Brussel-Zwijnen, Casper Vroemen, Bo Zhang, Kathleen A. Clarkson, Jacquelyn A. Huitink, Paula Johanna Maria Teunissen
  • Publication number: 20150232901
    Abstract: A fungal alpha-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase and an isoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the alpha-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an alpha-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Application
    Filed: August 13, 2013
    Publication date: August 20, 2015
    Inventors: Marco van Brussel-Zwijnen, Martijn Silvan Scheffers, Casper Vroemen
  • Publication number: 20150218606
    Abstract: A fungal alpha amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75 C, allowing the enzyme to be used in combination with a glucoamylase and a pullulanase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the alpha amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an alpha amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Application
    Filed: August 13, 2013
    Publication date: August 6, 2015
    Inventors: Marco van Brussel-Zwijnen, Jacquelyn A. Huitink, Martijn Silvan Scheffers, Paula Johanna Maria Teunissen, Casper Vroemen
  • Publication number: 20150152442
    Abstract: A fungal ?-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the ?-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an ?-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 4, 2015
    Inventors: Jing Ge, Ling Hua, Martijn Silvan Scheffers, Zhongmei Tang, Marco Van Brussel-Zwijnen, Casper Vroemen, Bo Zhang, Kathleen A. Clarkson, Jacquelyn A. Huitink, Paula Johanna Maria Teunissen
  • Patent number: 8945889
    Abstract: A fungal ?-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the ?-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an ?-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: February 3, 2015
    Assignee: Danisco US Inc.
    Inventors: Jing Ge, Ling Hua, Martijn Silvan Scheffers, Zhongmei Tang, Marco Van Brussel-Zwijnen, Casper Vroemen, Bo Zhang, Kathleen A. Clarkson, Jacquelyn A. Huitink, Paula Johanna Maria Teunissen
  • Patent number: 8809023
    Abstract: The present invention relates to combinatorial variants of a parent glucoamylase that have altered properties for reducing the synthesis of condensation products during hydrolysis of starch. Accordingly the variants of a parent glucoamylase are suitable such as for use within brewing and glucose syrup production. Also disclosed are DNA constructs encoding the variants and methods of producing the glucoamylase variants in host cells.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: August 19, 2014
    Assignee: Danisco US Inc.
    Inventors: Peter Edvard Degn, Richard Bott, Casper Willem Vroemen, Martijn Silvan Scheffers, Wolfgang Aehle
  • Publication number: 20130323798
    Abstract: A fungal ?-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the ?-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an ?-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
    Type: Application
    Filed: May 6, 2013
    Publication date: December 5, 2013
    Applicant: Danisco US Inc.
    Inventors: Jing Ge, Ling Hua, Martijn Silvan Scheffers, Zhongmei Tang, Marco Van Brussel-Zwijnen, Casper Vroemen, Bo Zhang, Kathleen A. Clarkson, Jacquelyn A. Huitink, Paula Johanna Maria Teunissen
  • Publication number: 20130309726
    Abstract: The present invention relates to combinatorial variants of a parent glucoamylase that have altered properties for reducing the synthesis of condensation products during hydrolysis of starch. Accordingly the variants of a parent glucoamylase are suitable such as for use within brewing and glucose syrup production. Also disclosed are DNA constructs encoding the variants and methods of producing the glucoamylase variants in host cells.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 21, 2013
    Applicant: DUPONT NUTRITION BIOSCIENCES APS
    Inventors: Peter Edvard Degn, Richard R. Bott, Casper Willem Vroemen, Martijn Silvan Scheffers, Wolfgang Aehle, Elin Petersen
  • Publication number: 20130102035
    Abstract: The present invention relates to combinatorial variants of a parent glucoamylase that have altered properties for reducing the synthesis of condensation products during hydrolysis of starch. Accordingly the variants of a parent glucoamylase are suitable such as for use within brewing and glucose syrup production. Also disclosed are DNA constructs encoding the variants and methods of producing the glucoamylase variants in host cells.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Applicant: DUPONT NUTRITION BIOSCIENCES APS
    Inventors: Peter Edvard Degn, Richard R. Bott, Casper Willem Vroemen, Martijn Silvan Scheffers, Wolfgang Aehle, Elin Petersen
  • Publication number: 20120164695
    Abstract: Presently provided are variant glucoamylases displaying altered properties, such as improved thermostability and/or specific activity. Also disclosed are DNA sequences coding for the variants, vectors and host cells incorporating the DNA sequence, enzyme compositions, and methods of using the variants in various applications.
    Type: Application
    Filed: August 18, 2010
    Publication date: June 28, 2012
    Applicant: DANISCO US INC.
    Inventors: Wolfgang Aehle, Richard R. Bott, Martijn Silvan Scheffers, Casper Vroeman
  • Publication number: 20120149070
    Abstract: The present invention relates to combinatorial variants of a parent glucoamylase that have altered properties for reducing the synthesis of condensation products during hydrolysis of starch. Accordingly the variants of a parent glucoamylase are suitable such as for use within brewing and glucose syrup production. Also disclosed are DNA constructs encoding the variants and methods of producing the glucoamylase variants in host cells.
    Type: Application
    Filed: August 18, 2010
    Publication date: June 14, 2012
    Applicants: DANISCO US INC., DANISCO A/S
    Inventors: Peter Edvard Degn, Richard Bott, Casper Willem Vroemen, Martijn Silvan Scheffers, Wolfgang Aehle