Patents by Inventor Martin B. Mollat

Martin B. Mollat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8436635
    Abstract: A semiconductor wafer includes a plurality of die areas including circuit elements, and at least one test module (TM) on the wafer outside the die areas. The TMs include a test circuit including plurality of test transistors arranged in a plurality of rows and columns. The plurality of test transistors include at least three terminals (G, S, D and B). The TMs each include a plurality of pads. The pads include a first plurality of locally shared first pads each coupled to respective ones of a first of the three terminals, a second plurality of locally shared second pads each coupled to respective ones of a second of the three terminals, and at least one of the plurality of pads coupled to a third of the three terminals. The TM provides at least 2 pin transistor selection for uniquely selecting from the plurality of test transistors for testing.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: May 7, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Doug Weiser, Fan-Chi Hou
  • Patent number: 8174077
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Publication number: 20110278693
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Patent number: 7986010
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: July 26, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Publication number: 20110050275
    Abstract: A semiconductor wafer includes a plurality of die areas including circuit elements, and at least one test module (TM) on the wafer outside the die areas. The TMs include a test circuit including plurality of test transistors arranged in a plurality of rows and columns. The plurality of test transistors include at least three terminals (G, S, D and B). The TMs each include a plurality of pads. The pads include a first plurality of locally shared first pads each coupled to respective ones of a first of the three terminals, a second plurality of locally shared second pads each coupled to respective ones of a second of the three terminals, and at least one of the plurality of pads coupled to a third of the three terminals. The TM provides at least 2 pin transistor selection for uniquely selecting from the plurality of test transistors for testing.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 3, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: MARTIN B. MOLLAT, DOUG WEISER, FAN-CHI FRANK HOU
  • Patent number: 7838429
    Abstract: A method for manufacturing a semiconductor device that method comprises forming a thin film resistor by a process that includes depositing a resistive material layer on a semiconductor substrate. The process also includes depositing an insulating layer on the resistive material layer, and performing a first dry etch process on the insulating layer to form an insulative body. The process further includes performing a second dry etch process on the resistive material layer to form a resistive body. The resistive body and the insulative body have substantially identical perimeters.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: November 23, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Tony Phan, Kyle M. Flessner, Martin B. Mollat, Connie Wang, Arthur Pan, Eric William Beach, Michelle R. Keramidas, Karen Elizabeth Burks
  • Patent number: 7776625
    Abstract: The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, without limitation, may include providing a substrate having a sub-surface feature and a surface feature, and determining a location of the sub-surface feature relative to the surface feature using a scatterometer.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: August 17, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Christopher C. Baum, Jonathan W. VanBuskirk
  • Publication number: 20100193868
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 5, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Patent number: 7709329
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: May 4, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Publication number: 20090023263
    Abstract: A method for manufacturing a semiconductor device that method comprises forming a thin film resistor by a process that includes depositing a resistive material layer on a semiconductor substrate. The process also includes depositing an insulating layer on the resistive material layer, and performing a first dry etch process on the insulating layer to form an insulative body. The process further includes performing a second dry etch process on the resistive material layer to form a resistive body. The resistive body and the insulative body have substantially identical perimeters.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Tony Phan, Kyle M. Flessner, Martin B. Mollat, Connie Wang, Arthur Pan, Eric William Beach, Michelle R. Keramidas, Karen Elizabeth Burks
  • Publication number: 20080197451
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Application
    Filed: February 20, 2007
    Publication date: August 21, 2008
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Patent number: 7415378
    Abstract: The present invention provides a method for analyzing critical defects in analog integrated circuits. The method for analyzing critical defects, among other possible steps, may include fault testing a power field effect transistor (120) portion of an analog integrated circuit (115) to obtain electrical failure data. The method may further include performing an in-line optical inspection of the analog integrated circuit (115) to obtain physical defect data, and correlating the electrical failure data and physical defect data to analyze critical defects.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 19, 2008
    Assignee: Texas Instruments incorporated
    Inventors: Martin B. Mollat, Milind V. Khandekar, Tony T. Phan, Kyle M. Flessner
  • Publication number: 20070287204
    Abstract: The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, without limitation, may include providing a substrate having a sub-surface feature and a surface feature, and determining a location of the sub-surface feature relative to the surface feature using a scatterometer.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Christopher C. Baum, Jonathan W. VanBuskirk
  • Patent number: 7262109
    Abstract: The present invention provides an integrated circuit and a method of manufacture therefor. The integrated circuit (100), in one embodiment without limitation, includes a dielectric layer (120) located over a wafer substrate (110), and a semiconductor substrate (130) located over the dielectric layer (120), the semiconductor substrate (130) having one or more transistor devices (160) located therein or thereon. The integrated circuit (100) may further include an interconnect (180) extending entirely through the semiconductor substrate (130) and the dielectric layer (120), thereby electrically contacting the wafer substrate (110), and one or more isolation structures (150) extending entirely through the semiconductor substrate (130) to the dielectric layer (120).
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 28, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: John Lin, Tony T. Phan, Philip L. Hower, William C. Loftin, Martin B. Mollat
  • Patent number: 7118958
    Abstract: The present invention provides a method for manufacturing a metal-insulator-metal (MIM) capacitor, a method for manufacturing an integrated circuit having a metal-insulator-metal (MIM) capacitor, and an integrated circuit having a metal-insulator-metal (MIM) capacitor. The method for manufacturing the metal-insulator-metal (MIM) capacitor, among other steps and without limitation, includes providing a material layer (185) over a substrate (110), and forming a refractory metal layer (210) having a thickness (t1) over the substrate (110), at least a portion of the refractory metal layer (210) extending over the material layer (185). The method further includes reducing the thickness (t2) of the portion of the refractory metal layer (210) extending over the material layer (185), thereby forming a thinned refractory metal layer (310), and reacting the thinned refractory metal layer (310) with at least a portion of the material layer (185) to form an electrode (440) for use in a capacitor.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Tony T. Phan, Martin B. Mollat