Patents by Inventor Martin Bergtholdt

Martin Bergtholdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148351
    Abstract: The present invention relates to a system (10) and related method for planning a tomographic image acquisition of an object to be imaged by a tomographic imaging scanner (20). The system comprises an input (12) for receiving a 3D pre-scan image of the object and a camera system (14) for capturing 3D image information of the object. The system comprises a processor (16) for determining corresponding image features in the camera image and the pre-scan image. The processor determines an image transformation that relates the corresponding image features to each other, such that the object as represented by the pre-scan image can be transformed to the orientation, position and/or deformation of the object represented in the camera image. The processor plans the image acquisition, in which the pre-scan image is used to determine parameters including scan range. An output (18) outputs a signal representative of the determined plan.
    Type: Application
    Filed: February 25, 2022
    Publication date: May 9, 2024
    Inventors: MARTIN BERGTHOLDT, JULIEN SENEGAS, HRISHIKESH NARAYANRAO DESHPANDE, HOLGER SCHMITT, LENA FRERKING
  • Patent number: 11915412
    Abstract: A cortical malformation identification method includes quantitatively evaluating, using a processor of a computer that includes the processor and a memory, digital image data from a magnetic resonance imaging (MRI) scan on a cerebral cortex to produce quantified scan data. The method also includes automatically detecting a cortical malformation based on the quantified scan data. An image of the cerebral cortex may be color-coded so that the cortical malformation is shown in a different color than the remainder of the cerebral cortex in the image, based on the quantified scan data. Additionally or alternatively, a 3-dimensional representation of the cerebral cortex may be mapped to the quantified scan data to produce a mapped image of the cerebral cortex including the detected cortical malformation.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 27, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Lyubomir Georgiev Zagorchev, Fabien Wenzel, Martin Bergtholdt, Houchun Hu, Jeffrey Miller, Carsten Meyer
  • Patent number: 11540800
    Abstract: The invention provides for a medical apparatus (100, 300, 400) comprising a subject support (102) configured for moving a subject (106) from a first position (124) to a second position (130) along a linear path (134). The subject support comprises a support surface (108) for receiving the subject. The subject support is further configured for positioning the subject support in at least one intermediate position (128). The subject support is configured for measuring a displacement (132) along the linear path between the first position and the at least one intermediate position. Each of the at least one intermediate position is located between the first position and the second position. The medical apparatus further comprises a camera (110) configured for imaging the support surface in the first position.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 3, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Koken, Julien Senegas, Martin Bergtholdt
  • Patent number: 11334992
    Abstract: There is provided a computer implemented method (200) for medical image processing. The method comprises providing (202) a database of medical images and providing (204) an initial machine learning model which is trained for segmenting or classifying a medical feature in the medical images. The method also comprises extracting (206) a subset of medical images from the database based on a similarity score of the medical images and training (208) the machine learning model using the extracted subset of medical images in order to provide a refined machine learning model.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 17, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexander Schmidt-Richberg, Martin Bergtholdt, Tobias Klinder
  • Publication number: 20210282700
    Abstract: A seizure characterization method includes correlating locations of electrodes placed around a brain and used to produce sequential electroencephalography (EEG) signals with a three-dimensional anatomical brain model derived from magnetic resonance imaging (MRI). The sequential EEG signals are modelled from the electrodes placed around the brain in three dimensions using cortical and sub-cortical brain regions included in the brain model to define constraints for the numerical solution. Amounts of the sequential EEG signals are quantified in three dimensions relative to the brain regions included in the brain model. The method also includes establishing, based on the quantifying, at least one propagation pattern of the sequential EEG signals in time relative to the brain regions in the brain model.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 16, 2021
    Inventors: Lyubomir Georgiev ZAGORCHEV, Fabian WENZEL, Carsten MEYER, Martin BERGTHOLDT, Houchun HU, Jeffrey MILLER
  • Patent number: 11051783
    Abstract: The present invention relates to an X-ray radiograph apparatus (10). It is described to placing (110) an X-ray source (20) relative to an X-ray detector (30) to form an examination region for the accommodation of an object, wherein, a reference spatial coordinate system is defined on the basis of geometry parameters of the X-ray radiography apparatus. A camera (40) is located (120) at a position and orientation to view the examination region. A depth image of the object is acquired (130) with the camera within a camera spatial coordinate system, wherein within the depth image pixel values represent distances for corresponding pixels.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: July 6, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Julien Senegas, Sascha Andreas Jockel, Hanns-Ingo Maack, Martin Bergtholdt
  • Patent number: 11006907
    Abstract: The appropriate positioning of a patient in an X-Ray imaging system can present difficulties for medical professional owing, on one hand to the small size of important anatomical aspects which need to be captured in X-Ray images, and on the other hand to the significant movements in a field of view presented by a typical patient. The present application proposes to obtain an image of the position of a patient in the field of view at approximately the same time that an initial X-Ray image is obtained. If it proves necessary to obtain a subsequent X-Ray image with updated field of view settings (for example, collimation parameters), the movement of the patient at the point of taking the second image is factored into the provision of updated field of view settings.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: May 18, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Julien Senegas, Martin Bergtholdt
  • Patent number: 10984533
    Abstract: A method and apparatus for segmenting a two-dimensional image of an anatomical structure includes acquiring (202) a three-dimensional model of the anatomical structure. The three-dimensional model includes a plurality of segments. The acquired three-dimensional model is adapted to align the acquired three-dimensional model with the two-dimensional image (204). The two-dimensional image is segmented by the plurality of segments of the adapted three-dimensional model.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: April 20, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexander Schmidt-Richberg, Irina Waechter-Stehle, Martin Bergtholdt, Jochen Peters, Rolf Jürgen Weese
  • Patent number: 10921412
    Abstract: The invention provides for a medical instrument (100) comprising a processor (134) and a memory (138) containing machine executable instructions (140). Execution of the machine executable instructions causes the processor to: receive (200) a first magnetic resonance image data set (146) descriptive of a first region of interest (122) of a subject (118) and receive (202) at least one second magnetic resonance image data set (152, 152?) descriptive of a second region of interest (124) of the subject. The first region of interest at least partially comprises the second region of interest. Execution of the machine executable instructions further cause the processor to receive (204) an analysis region (126) within both the first region of interest and within the second region of interest.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 16, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Fabian Wenzel, Martin Bergtholdt, Frank Olaf Thiele
  • Patent number: 10758212
    Abstract: A planning tool, system and method include a processor (114) and memory (116) coupled to the processor which stores a planning module (144). A user interface (120) is coupled to the processor and configured to permit a user to select a path through a pathway system (148). The planning module is configured to upload one or more slices of an image volume (111) corresponding to a user-controlled cursor point (108) guided using the user interface such that as the path is navigated the one or more slices are updated in accordance with a depth of the cursor point in the path.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 1, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Kongkuo Lu, Sheng Xu, Tobias Klinder, Martin Bergtholdt
  • Publication number: 20200265579
    Abstract: There is provided a computer implemented method (200) for medical image processing. The method comprises providing (202) a database of medical images and providing (204) an initial machine learning model which is trained for segmenting or classifying a medical feature in the medical images. The method also comprises extracting (206) a subset of medical images from the database based on a similarity score of the medical images and training (208) the machine learning model using the extracted subset of medical images in order to provide a refined machine learning model.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 20, 2020
    Inventors: Alexander SCHMIDT-RICHBERG, Martin BERGTHOLDT, Tobias KLINDER
  • Publication number: 20200237334
    Abstract: The invention provides for a medical apparatus (100, 300, 400) comprising a subject support (102) configured for moving a subject (106) from a first position (124) to a second position (130) along a linear path (134). The subject support comprises a support surface (108) for receiving the subject. The subject support is further configured for positioning the subject support in at least one intermediate position (128). The subject support is configured for measuring a displacement (132) along the linear path between the first position and the at least one intermediate position. Each of the at least one intermediate position is located between the first position and the second position. The medical apparatus further comprises a camera (110) configured for imaging the support surface in the first position.
    Type: Application
    Filed: October 12, 2018
    Publication date: July 30, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: PETER KOKEN, JULIEN SENEGAS, MARTIN BERGTHOLDT
  • Publication number: 20200100757
    Abstract: The present invention relates to an X-ray radiograph apparatus (10). It is described to placing (110) an X-ray source (20) relative to an X-ray detector (30) to form an examination region for the accommodation of an object, wherein, a reference spatial coordinate system is defined on the basis of geometry parameters of the X-ray radiography apparatus. A camera (40) is located (120) at a position and orientation to view the examination region. A depth image of the object is acquired (130) with the camera within a camera spatial coordinate system, wherein within the depth image pixel values represent distances for corresponding pixels.
    Type: Application
    Filed: June 15, 2018
    Publication date: April 2, 2020
    Inventors: JULIEN SENEGAS, SASCHA ANDREAS JOCKEL, HANNS-INGO MAACK, MARTIN BERGTHOLDT
  • Patent number: 10586398
    Abstract: The present invention relates to medical image editing. In order to facilitate the medical image editing process, a medical image editing device (50) is provided that comprises a processor unit (52), an output unit (54), and an interface unit (56). The processor unit (52) is configured to provide a 3D surface model of an anatomical structure of an object of interest. The 3D surface model comprises a plurality of surface sub-portions. The surface sub-portions each comprise a number of vertices, and each vertex is assigned by a ranking value. The processor unit (52) is further configured to identify at least one vertex of vertices adjacent to the determined point of interest as an intended vertex. The identification is based on a function of a detected proximity distance to the point of interest and the assigned ranking value. The output unit (54) is configured to provide a visual presentation of the 3D surface model.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 10, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Fabian Wenzel, Thomas Heiko Stehle, Carsten Meyer, Lyubomir Georgiev Zagorchev, Jochen Peters, Martin Bergtholdt
  • Publication number: 20200058389
    Abstract: A system and method are provided for selecting an acquisition parameter for an imaging system. The acquisition parameter at least in part defines an imaging configuration of the imaging system during an imaging procedure with a patient. A depth-related map is accessed which is generated on the basis of sensor data from a camera system, wherein the camera system has a field of view which includes at least part of a field of view of the imaging system, wherein the sensor data is obtained before the imaging procedure with the patient and indicative of a distance that parts of the patient's exterior have towards the camera system. A machine learning algorithm is applied to the depth-related map to identify the acquisition parameter, which may be provided to the imaging system.
    Type: Application
    Filed: November 7, 2017
    Publication date: February 20, 2020
    Inventors: Axel Saalbach, Julien Senegas, Alexandra Groth, Sascha Andreas Jockel, Martin Bergtholdt
  • Publication number: 20200029919
    Abstract: The appropriate positioning of a patient in an X-Ray imaging system can present difficulties for medical professional owing, on one hand to the small size of important anatomical aspects which need to be captured in X-Ray images, and on the other hand to the significant movements in a field of view presented by a typical patient. The present application proposes to obtain an image of the position of a patient in the field of view at approximately the same time that an initial X-Ray image is obtained. If it proves necessary to obtain a subsequent X-Ray image with updated field of view settings (for example, collimation parameters), the movement of the patient at the point of taking the second image is factored into the provision of updated field of view settings.
    Type: Application
    Filed: December 24, 2018
    Publication date: January 30, 2020
    Inventors: JULIEN SENEGAS, MARTIN BERGTHOLDT
  • Patent number: 10515478
    Abstract: A method for processing image data includes obtaining a first set of 3D volumetric image data. The 3D volumetric image data includes a volume of voxels. Each voxel has an intensity. The method further includes obtaining a local voxel noise estimate for each of the voxels of the volume. The method further includes processing the volume of voxels based at least on the intensity of the voxels and the local voxel noise estimates of the voxels. An image data processor (124) includes a computer processor that at least one of: generate a 2D direct volume rendering from first 3D volumetric image data based on voxel intensity and individual local voxel noise estimates of the first 3D volumetric image data, or registers second 3D volumetric image data and first 3D volumetric image data based at least one individual local voxel noise estimates of second and first 3D volumetric image data sets.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: December 24, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Tobias Klinder, Martin Bergtholdt, Cristian Lorenz
  • Publication number: 20190346526
    Abstract: The invention provides for a medical instrument (100) comprising a processor (134) and a memory (138) containing machine executable instructions (140). Execution of the machine executable instructions causes the processor to: receive (200) a first magnetic resonance image data set (146) descriptive of a first region of interest (122) of a subject (118) and receive (202) at least one second magnetic resonance image data set (152, 152?) descriptive of a second region of interest (124) of the subject. The first region of interest at least partially comprises the second region of interest. Execution of the machine executable instructions further cause the processor to receive (204) an analysis region (126) within both the first region of interest and within the second region of interest.
    Type: Application
    Filed: November 10, 2017
    Publication date: November 14, 2019
    Inventors: FABIAN WENZEL, MARTIN BERGTHOLDT, FRANK OLAF THIELE
  • Publication number: 20190347795
    Abstract: A cortical malformation identification method includes quantitatively evaluating, using a processor of a computer that includes the processor and a memory, digital image data from a magnetic resonance imaging (MRI) scan on a cerebral cortex to produce quantified scan data. The method also includes automatically detecting a cortical malformation based on the quantified scan data. An image of the cerebral cortex may be color-coded so that the cortical malformation is shown in a different color than the remainder of the cerebral cortex in the image, based on the quantified scan data. Additionally or alternatively, a 3-dimensional representation of the cerebral cortex may be mapped to the quantified scan data to produce a mapped image of the cerebral cortex including the detected cortical malformation.
    Type: Application
    Filed: January 3, 2018
    Publication date: November 14, 2019
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, FABIEN WENZEL, MARTIN BERGTHOLDT, HOUCHUN HU, JEFFREY MILLER, CARSTEN MEYER
  • Publication number: 20190251692
    Abstract: There is provided a method and apparatus for segmenting a two-dimensional image of an anatomical structure. A three-dimensional model of the anatomical structure is acquired (202). The three-dimensional model comprises a plurality of segments. The acquired three-dimensional model is adapted to align the acquired three-dimensional model with the two-dimensional image (204). The two-dimensional image is segmented by the plurality of segments of the adapted three-dimensional model.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 15, 2019
    Inventors: Alexander SCHMIDT-RICHBERG, Irina WAECHTER-STEHLE, Martin BERGTHOLDT, Jochen PETERS, Rolf Jürgen WEESE