Patents by Inventor Martin Biler

Martin Biler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130271894
    Abstract: Described is a capacitor assembly that is thermally and mechanically stable under extreme conditions. Thermal stability is provided by enclosing and hermetically sealing the capacitor element within a housing in the presence of a gaseous atmosphere that contains an inert gas, thereby limiting the amount of oxygen and moisture supplied to the solid electrolyte of the capacitor. To provide good mechanical stability, the assembly contains at least one external termination (e.g., anode and/or cathode termination) extending beyond an outer periphery of a surface of the housing. The degree to which the external termination extends beyond the outer periphery relative to the dimension of the housing is selectively controlled to increase the surface area available for soldering to a circuit board.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 17, 2013
    Applicant: AVX Corporation
    Inventor: Martin Biler
  • Publication number: 20130242467
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains an alkyl-substituted poly(3,4-ethylenedioxythiophene) having a certain structure. Such polymers can result in a higher degree of capacitance than many conventional types of coating materials. Further, because the polymers are generally semi-crystalline or amorphous, they can dissipate and/or absorb the heat associated with the high voltage. The degree of surface contact between the conductive coating and the surface of the metal substrate may also be enhanced in the present invention by selectively controlling the manner in which the conductive coating is formed.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX CORPORATION
    Inventor: Martin Biler
  • Publication number: 20130242465
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX Corporation
    Inventors: Mitchell D. Weaver, Dirk H. Dreissig, Jan Petrzilek, Martin Biler, David Masheder, Ian Pinwill
  • Publication number: 20130242464
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains a conductive copolymer having at least one thiophene repeating unit, as well as a pyrrole repeating unit and/or aniline repeating unit.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Jan Petrzilek, Dirk H. Dreissig, Mitchell D. Weaver
  • Patent number: 8493713
    Abstract: A dispersion that contains an intrinsically conductive polythiophene formed via poly(ionic liquid)-mediated polymerization is provided. Without intending to be limited by theory, it is believed that a thiophene monomer can polymerize along the chains of a poly(ionic liquid). In this manner, the poly(ionic liquid) may act as a template for polymerization to provide a particle dispersion that is substantially homogeneous and stable. Such dispersions may be employed in an electrolytic capacitor as a solid electrolyte and/or as a conductive coating that is electrical communication with the electrolyte. Regardless, the dispersion may be more easily and cost effectively formed and incorporated into the structure of the capacitor. Moreover, due to the presence of the ionic liquid, the dispersion is conductive and does not require the addition of conventional dopants, such as polystyrene sulfonic acid.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 23, 2013
    Assignee: AVX Corporation
    Inventors: Martin Biler, Lubomir Kubac, Jiri Akrman
  • Patent number: 8451588
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte overlying the dielectric, and a colloidal particle coating that overlies the solid electrolyte. The coating is formed from a colloidal particle dispersion. The particles of the dispersion contain at least two different polymer components—i.e., a conductive polymer and a latex polymer. One benefit of such a coating is that the presence of the latex polymer can help mechanically stabilize the capacitor during encapsulation due to its relatively soft nature. This helps limit delamination of the solid electrolyte and any other damage that may otherwise occur during formation of the capacitor. Furthermore, the latex polymer can also enhance the ability of the particles to be dispersed in an aqueous medium, which is desirable in various applications.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 28, 2013
    Assignee: AVX Corporation
    Inventor: Martin Biler
  • Patent number: 8379372
    Abstract: A capacitor assembly that is stable under extreme conditions is provided. More particularly, the assembly includes a capacitor element that is positioned within an interior cavity of a housing. The housing includes a base to which the capacitor element is connected. The housing also includes a lid that contains an outer wall from which extends a sidewall. An end of the sidewall is defined by a lip extending at an angle relative to the longitudinal direction and having a peripheral edge located beyond a periphery of the sidewall. The lip is hermetically sealed to the base. In some cases, the peripheral edge of the lip is also coplanar with an edge of the base. The use of such a lip can enable a more stable connection between the components and improve the seal and mechanical stability of the capacitor assembly, thereby allowing it to better function under extreme conditions.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 19, 2013
    Assignee: AVX Corporation
    Inventors: Stanislav Zednicek, Martin Biler, Jan Petrzilek, Ivana Zednickova
  • Publication number: 20120307420
    Abstract: A capacitor assembly that includes an electrolytic capacitor that contains an anode body, dielectric overlying the anode, and a solid electrolyte overlying the dielectric is provided. An anode lead is also electrically connected to the anode body and extends therefrom. The capacitor and leadframe are enclosed and hermetically sealed within a ceramic housing in the presence of an inert gas. In this manner, the solid electrolyte (e.g., conductive polymer) is less likely to undergo a reaction in high temperature environments, thus increasing the thermal stability of the capacitor assembly.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: AVX CORPORATION
    Inventors: Stanislav Zednicek, Ladislav Vilc, Martin Biler
  • Patent number: 8300387
    Abstract: A capacitor assembly that is thermally and mechanically stable in high temperature environments is provided. Thermal stability is provided by enclosing and hermetically sealing the capacitor element within a housing in the presence of a gaseous atmosphere that contains an inert gas, thereby limiting the amount of oxygen and moisture supplied to the solid electrolyte of the capacitor. To provide the assembly with good mechanical stability, a polymeric restraint is also employed that is positioned adjacent to and in contact with one or more surfaces of the capacitor element. Without intending to be limited by theory, it is believed that the strength and rigidity of the polymeric restraint can help the capacitor element better withstand vibrational forces incurred during use without resulting in delamination. In this manner, the capacitor assembly is able to better function in high temperature environments.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 30, 2012
    Assignee: AVX Corporation
    Inventors: Ivana Zednickova, Martin Biler
  • Publication number: 20120257329
    Abstract: A capacitor assembly for use in high voltage and high temperature environments is provided. More particularly, the capacitor assembly includes a capacitor element containing an anodically oxidized porous, sintered body that is coated with a manganese oxide solid electrolyte. To help facilitate the use of the capacitor assembly in high voltage (e.g., above about 35 volts) and high temperature (e.g., above about 175° C.) applications, the capacitor element is enclosed and hermetically sealed within a housing in the presence of a gaseous atmosphere that contains an inert gas.
    Type: Application
    Filed: December 7, 2011
    Publication date: October 11, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Jan Petrzilek, Ivana Zednickova
  • Publication number: 20120257328
    Abstract: A capacitor assembly that is stable under extreme conditions is provided. More particularly, the assembly includes a capacitor element that is positioned within an interior cavity of a housing. The housing includes a base to which the capacitor element is connected. The housing also includes a lid that contains an outer wall from which extends a sidewall. An end of the sidewall is defined by a lip extending at an angle relative to the longitudinal direction and having a peripheral edge located beyond a periphery of the sidewall. The lip is hermetically sealed to the base. In some cases, the peripheral edge of the lip is also coplanar with an edge of the base. The use of such a lip can enable a more stable connection between the components and improve the seal and mechanical stability of the capacitor assembly, thereby allowing it to better function under extreme conditions.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: AVX CORPORATION
    Inventors: Stanislav Zednicek, Martin Biler, Jan Petrzilek, Ivana Zednickova
  • Publication number: 20120257327
    Abstract: A capacitor assembly that is thermally and mechanically stable in high temperature environments is provided. Thermal stability is provided by enclosing and hermetically sealing the capacitor element within a housing in the presence of a gaseous atmosphere that contains an inert gas, thereby limiting the amount of oxygen and moisture supplied to the solid electrolyte of the capacitor. To provide the assembly with good mechanical stability, a polymeric restraint is also employed that is positioned adjacent to and in contact with one or more surfaces of the capacitor element. Without intending to be limited by theory, it is believed that the strength and rigidity of the polymeric restraint can help the capacitor element better withstand vibrational forces incurred during use without resulting in delamination. In this manner, the capacitor assembly is able to better function in high temperature environments.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: AVX CORPORATION
    Inventors: Ivana Zednickova, Martin Biler
  • Publication number: 20120229955
    Abstract: A solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, a solid electrolyte overlying the dielectric, and a colloidal particle coating that overlies the solid electrolyte. The coating is formed from a colloidal particle dispersion. The particles of the dispersion contain at least two different polymer components—i.e., a conductive polymer and a latex polymer. One benefit of such a coating is that the presence of the latex polymer can help mechanically stabilize the capacitor during encapsulation due to its relatively soft nature. This helps limit delamination of the solid electrolyte and any other damage that may otherwise occur during formation of the capacitor. Furthermore, the latex polymer can also enhance the ability of the particles to be dispersed in an aqueous medium, which is desirable in various applications.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 13, 2012
    Applicant: AVX CORPORATION
    Inventor: Martin Biler
  • Patent number: 8264819
    Abstract: The present invention relates to a solid state capacitor having a conductive polymer cathode layer counter electrode that includes an acrylate binder and a method for its manufacture. In particular the present invention relates to a solid state capacitor comprising: providing a porous anode body of valve action material; forming a dielectric layer on said porous body; forming a cathode layer in contact with the dielectric layer, which cathode layer comprises a conductive polymer and an acrylic binder; and providing an anode terminal in electrical connection with the porous body anode and a cathode terminal in electrical connection with the cathode layer and a method for its manufacture.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: September 11, 2012
    Assignee: AVX Corporation
    Inventors: Martin Biler, Zdenek Sita
  • Publication number: 20120147529
    Abstract: A solid electrolytic capacitor a solid electrolytic capacitor that includes an anode body, a dielectric overlying the anode body, and a solid electrolyte overlying the dielectric is provided. The capacitor also comprises a conductive polymer coating that overlies the solid electrolyte and includes nanoparticles formed from a poly(3,4-ethylenedioxythiophene) quaternary onium salt.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Lubomir Kubac, Radana Becvarikova
  • Publication number: 20120147528
    Abstract: A dispersion that contains an intrinsically conductive polythiophene formed via poly(ionic liquid)-mediated polymerization is provided. Without intending to be limited by theory, it is believed that a thiophene monomer can polymerize along the chains of a poly(ionic liquid). In this manner, the poly(ionic liquid) may act as a template for polymerization to provide a particle dispersion that is substantially homogeneous and stable. Such dispersions may be employed in an electrolytic capacitor as a solid electrolyte and/or as a conductive coating that is electrical communication with the electrolyte. Regardless, the dispersion may be more easily and cost effectively formed and incorporated into the structure of the capacitor. Moreover, due to the presence of the ionic liquid, the dispersion is conductive and does not require the addition of conventional dopants, such as polystyrene sulfonic acid.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Lubomir Kubac, Jiri Akrman
  • Patent number: 8194395
    Abstract: A capacitor assembly that includes an electrolytic capacitor that contains an anode body, dielectric overlying the anode, and a solid electrolyte overlying the dielectric is provided. An anode lead is also electrically connected to the anode body and extends in a longitudinal direction therefrom. The anode lead is connected to an “upstanding” portion of a leadframe. Among other things, this helps to limit substantial horizontal movement of the lead and thereby improve the mechanical robustness of the part. The capacitor and leadframe are enclosed and hermetically sealed within a ceramic housing in the presence of an inert gas. It is believed that the ceramic housing is capable of limiting the amount of oxygen and moisture supplied to the conductive polymer of the capacitor. In this manner, the solid electrolyte (e.g., conductive polymer) is less likely to undergo a reaction in high temperature environments, thus increasing the thermal stability of the capacitor assembly.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: June 5, 2012
    Assignee: AVX Corporation
    Inventors: Stanislav Zednicek, Ladislav Vilc, Martin Biler
  • Publication number: 20120106031
    Abstract: A capacitor assembly for use in high voltage and high temperature environments is provided. More particularly, the capacitor assembly includes a solid electrolytic capacitor element containing an anode body, a dielectric overlying the anode, and a solid electrolyte overlying the dielectric. To help facilitate the use of the capacitor assembly in high voltage applications, it is generally desired that the solid electrolyte is formed from a dispersion of preformed conductive polymer particles. In this manner, the electrolyte may remain generally free of high energy radicals (e.g., Fe2+ or Fe3+ ions) that can lead to dielectric degradation, particularly at relatively high voltages (e.g., above about 60 volts). Furthermore, to help protect the stability of the solid electrolyte at high temperatures, the capacitor element is enclosed and hermetically sealed within a housing in the presence of a gaseous atmosphere that contains an inert gas.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: AVX CORPORATION
    Inventors: Ladislav Vilc, Martin Biler, Stanislav Zednicek
  • Publication number: 20120069492
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, an electrolyte, and a cathode containing a metal substrate that is abrasive blasted is provided. Abrasive blasting may accomplish a variety of different purposes. For example, it may result in a surface that is substantially uniform and macroscopically smooth, thereby increasing the consistency of conductive coatings formed thereon. While possessing a certain degree of smoothness, the abrasive blasted surface is nevertheless micro-roughened so that it contains a plurality of pits. The pits provide an increased surface area, thereby allowing for increased cathode capacitance for a given size and/or capacitors with a reduced size for a given capacitance. A conductive coating that contains a substituted polythiophene is disposed on the micro-roughened surface.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, John Galvagni, Dirk H. Dreissiig, Zebbie Lynn Sebald, Frantisek Priban
  • Publication number: 20120069490
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, a cathode containing a metal substrate on which is disposed a conductive polymer coating, and an electrolyte is provided. The conductive polymer coating is in the form of a dispersion of particles having a relatively small size, such as an average diameter of from about 1 to about 500 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 300 nanometers. The relatively small size of the particles used in the coating increases the surface area that is available for adhering to the metal substrate, which in turn improves mechanical robustness and electrical performance (e.g., reduced equivalent series resistance and leakage current). Another benefit of employing such a dispersion for the conductive polymer coating is that it may be able to better cover crevices of the metal substrate and improve electrical contact.
    Type: Application
    Filed: July 28, 2011
    Publication date: March 22, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Dirk H. Dreissig, Frantisek Priban, Jan Petrzilek