Patents by Inventor Martin Bjerge

Martin Bjerge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8242617
    Abstract: A method and an arrangement for the damping of tower-oscillations are provided. The method for the damping of tower-oscillations includes transforming a rotation into electrical power using a generator, which is located on top of the tower. The electrical power is transformed from AC to DC and back to AC by a converter. A power-reference-signal is used by the converter to control the delivered electrical power. A variable power-offset-signal is added to the power-reference-signal before it is used for the control. The variable power-offset-signal is based on a mean value of the power-reference-signal and a side-to-side-oscillation of the tower.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: August 14, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Bjerge, Per Egedal
  • Patent number: 8167556
    Abstract: A method of damping tower oscillation in a wind turbine is provided. The method includes the steps of determining a rotor rotational speed of the wind turbine and controlling the rotor rotational speed such that a critical rotor speed is avoided, characterized in that it further comprises the following steps: selecting at least one input parameter value; selecting, according to the input parameter value, an operation mode for controlling the rotor rotational speed, wherein the operation mode is selected from a set of modes comprising a mode of auto tune operation; on the condition of the selected operation mode comprising the mode of auto tune operation, performing the following steps: detecting the tower oscillation frequency; calculating the critical rotor speed based on the detected tower oscillation frequency and controlling the rotor rotational speed to avoid the calculated critical rotor speed. An apparatus and a computer program product are also provided.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 1, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Bjerge, Per Egedal
  • Patent number: 8044670
    Abstract: An apparatus for determining a resonant frequency of a wind turbine tower is provided. The apparatus includes a processing unit configured to receive an acceleration measurement value, the acceleration measurement value representative of the acceleration of the wind turbine tower in the direction parallel to a rotor rotational axis of the wind turbine and/or in the direction perpendicular to both the rotor rotational axis and the tower axis of the wind turbine. The apparatus includes a memory configured to store a series of acceleration measurement values, and the processing unit includes a Fourier transform module configured to calculate a spectral vector based on calculating a convolution-based fast Fourier transform of the series of acceleration measurement values, and includes a resonant frequency calculation module configured to calculate the tower resonant frequency based on the calculated spectral vector.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 25, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Bjerge, Per Egedal
  • Publication number: 20100013235
    Abstract: A method and an arrangement for the damping of tower-oscillations are provided. The method for the damping of tower-oscillations includes transforming a rotation into electrical power using a generator, which is located on top of the tower. The electrical power is transformed from AC to DC and back to AC by a converter. A power-reference-signal is used by the converter to control the delivered electrical power. A variable power-offset-signal is added to the power-reference-signal before it is used for the control. The variable power-offset-signal is based on a mean value of the power-reference-signal and a side-to-side-oscillation of the tower.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 21, 2010
    Inventors: Martin Bjerge, Per Egedal
  • Publication number: 20090292397
    Abstract: A method of damping tower oscillation in a wind turbine is provided. The method includes the steps of determining a rotor rotational speed of the wind turbine and controlling the rotor rotational speed such that a critical rotor speed is avoided, characterized in that it further comprises the following steps: selecting at least one input parameter value; selecting, according to the input parameter value, an operation mode for controlling the rotor rotational speed, wherein the operation mode is selected from a set of modes comprising a mode of auto tune operation; on the condition of the selected operation mode comprising the mode of auto tune operation, performing the following steps: detecting the tower oscillation frequency; calculating the critical rotor speed based on the detected tower oscillation frequency and controlling the rotor rotational speed to avoid the calculated critical rotor speed. An apparatus and a computer program product are also provided.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 26, 2009
    Inventors: Martin Bjerge, Per Egedal
  • Publication number: 20090230682
    Abstract: An apparatus for determining a resonant frequency of a wind turbine tower is provided. The apparatus includes a processing unit configured to receive an acceleration measurement value, the acceleration measurement value representative of the acceleration of the wind turbine tower in the direction parallel to a rotor rotational axis of the wind turbine and/or in the direction perpendicular to both the rotor rotational axis and the tower axis of the wind turbine. The apparatus includes a memory configured to store a series of acceleration measurement values, and the processing unit includes a Fourier transform module configured to calculate a spectral vector based on calculating a convolution-based fast Fourier transform of the series of acceleration measurement values, and includes a resonant frequency calculation module configured to calculate the tower resonant frequency based on the calculated spectral vector.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Inventors: Martin Bjerge, Per Egedal