Patents by Inventor Martin Brunotte

Martin Brunotte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7382536
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 3, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7180667
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 20, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7170585
    Abstract: A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 30, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Martin Brunotte, Jürgen Hartmaier, Hubert Holderer, Winfried Kaiser, Alexander Kohl, Jens Kugler, Manfred Maul, Christian Wagner
  • Patent number: 7145720
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 5, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7126765
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: October 24, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Publication number: 20060171020
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: March 29, 2006
    Publication date: August 3, 2006
    Applicant: Carl Zeiss SMT AG
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20050264786
    Abstract: A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
    Type: Application
    Filed: April 7, 2005
    Publication date: December 1, 2005
    Inventors: Martin Brunotte, Jurgen Hartmaier, Hubert Holderer, Winfried Kaiser, Alexander Kohl, Jens Kugler, Manfred Maul, Christian Wagner
  • Publication number: 20050190446
    Abstract: A catadioptric projection objective for projecting a pattern, which is located in the object plane of the projection objective, into the image plane of the projection objective has, between the object plane and the image plane, a catadioptric objective part provided with a concave mirror (17), with a first deviating mirror (16) and with at least one second deviating mirror (19). A polarization rotating device (26) rotates the preferred polarization direction of the light approximately 90° inside the light path between the deviating mirrors. This permits an at least partial compensation for polarization-dependent reflectivity differences and phase effect differences of the deviating mirrors thereby enabling a projection with a largely identical contrast for all structural directions.
    Type: Application
    Filed: December 23, 2004
    Publication date: September 1, 2005
    Inventors: Birgit Kuerz, Olaf Dittmann, Toralf Gruner, Vladimir Kamenov, Martin Brunotte
  • Publication number: 20050134967
    Abstract: A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
    Type: Application
    Filed: March 3, 2005
    Publication date: June 23, 2005
    Applicant: CARL ZEISS SMT AG
    Inventors: Martin Brunotte, Jurgen Hartmaier, Hubert Holderer, Winfried Kaiser, Alexander Kohl, Jens Kugler, Manfred Maul, Christian Wagner
  • Publication number: 20050122594
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: January 5, 2005
    Publication date: June 9, 2005
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Patent number: 6879379
    Abstract: A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: April 12, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Martin Brunotte, Jürgen Hartmaier, Hubert Holderer, Winfried Kaiser, Alexander Kohl, Jens Kugler, Manfred Maul, Christian Wagner
  • Patent number: 6817357
    Abstract: The invention relates to a collector module (1) comprising a collector pipe (2) which has a inlet (9) and an outlet (10) for the heat transfer medium. Said collector module (1) also comprises at least one co-axially cross-flown collector pipe (3) which has a jacket pipe (4), an absorber pipe (5) and a co-axial pipe (6). The aim of the invention is to produce a collector module which has good mounting qualities as well as good sealing abilities and increased endurance. According to the invention, the outlet (10) comprises at least one hollow nipple (12) which extends in the radial direction of the collector pipe, whereon at least one absorbing pipe (5) is fixed in a co-axial manner, whereby at least one sealing element (15) is arranged between the nipple (12) and the absorbing pipe (5). The inlet (9) comprises at least one element (13, 20) for receiving the co-axial pipe.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: November 16, 2004
    Assignee: Schott Glas
    Inventors: Martin Brunotte, Gottfried Haas, Klaus Quast
  • Publication number: 20040218271
    Abstract: Centimeter thick plates or lenses made from calcium fluoride or barium fluoride with beam propagation in the direction of the <110> crystal direction or of a main axis equivalent thereto are provided as retardation elements for the deep ultraviolet. They can be installed in an unstressed fashion. In a particular embodiment a retardation plate comprises a birefringent crystal plate which has an entry face and an exit face for incident and emerging light, respectively. A form-birefringent dielectric layer structure is applied to the entry and/or exit face. It may, for example, be a periodic sequence of at least two layers with alternating refractive indices. The retardation plate is suitable for ultraviolet light, and permits a large range of angles of incidence. Retardation elements according to the invention are particularly suitable for microlithography at 157 nm.
    Type: Application
    Filed: January 16, 2004
    Publication date: November 4, 2004
    Applicant: CARL ZEISS SMT AG
    Inventors: Juergen Hartmaier, Damian Fiolka, Markus Zenzinger, Birgit Mecking, Olaf Dittmann, Toralf Gruner, Vladimir Kamenov, Martin Brunotte
  • Publication number: 20040190151
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: April 1, 2004
    Publication date: September 30, 2004
    Inventors: Daniel Krahmer, Toralf Gruner, Wilheim Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20040150806
    Abstract: A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
    Type: Application
    Filed: November 14, 2003
    Publication date: August 5, 2004
    Inventors: Martin Brunotte, Jurgen Hartmaier, Hubert Holderer, Winfried Kaiser, Alexander Kohl, Jens Kugler, Manfred Maul, Christian Wagner
  • Publication number: 20040105170
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: February 12, 2003
    Publication date: June 3, 2004
    Applicant: Carl Zeiss SMT AG
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20040050542
    Abstract: The invention relates to a collector module (1) comprising a collector pipe (2) which has a inlet (9) and an outlet (10) for the heat transfer medium. Said collector module (1) also comprises at least one co-axially cross-flown collector pipe (3) which has a jacket pipe (4), an absorber pipe (5) and a co-axial pipe (6). The aim of the invention is to produce a collector module which has good mounting qualities as well as good sealing abilities and increased endurance. According to the invention, the outlet (10) comprises at least one hollow nipple (12) which extends in the radial direction of the collector pipe, whereon at least one absorbing pipe (5) is fixed in a co-axial manner, whereby at least one sealing element (15) is arranged between the nipple (12) and the absorbing pipe (5). The inlet (9) comprises at least one element (13, 20) for receiving the co-axial pipe.
    Type: Application
    Filed: July 7, 2003
    Publication date: March 18, 2004
    Inventors: Martin Brunotte, Gottfried Haas, Klaus Quast