Patents by Inventor Martin C. Maas

Martin C. Maas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004790
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Timothy L. Harris, Martin C. Maas
  • Patent number: 11797438
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: October 24, 2023
    Assignee: Oracle International Corporation
    Inventors: Timothy L. Harris, Martin C. Maas
  • Publication number: 20220066927
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Application
    Filed: November 12, 2021
    Publication date: March 3, 2022
    Inventors: Timothy L. Harris, Martin C. Maas
  • Patent number: 11200164
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: December 14, 2021
    Assignee: Oracle International Corporation
    Inventors: Timothy L. Harris, Martin C. Maas
  • Publication number: 20200257573
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Timothy L. Harris, Martin C. Maas
  • Patent number: 10642663
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: May 5, 2020
    Assignee: Oracle International Corporation
    Inventors: Timothy L. Harris, Martin C. Maas
  • Patent number: 10241831
    Abstract: Multi-core computers may implement a resource management layer between the operating system and resource-management-enabled parallel runtime systems. The resource management components and runtime systems may collectively implement dynamic co-scheduling of hardware contexts when executing multiple parallel applications, using a spatial scheduling policy that grants high priority to one application per hardware context and a temporal scheduling policy for re-allocating unused hardware contexts. The runtime systems may receive resources on a varying number of hardware contexts as demands of the applications change over time, and the resource management components may co-ordinate to leave one runnable software thread for each hardware context. Periodic check-in operations may be used to determine (at times convenient to the applications) when hardware contexts should be re-allocated. Over-subscription of worker threads may reduce load imbalances between applications.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 26, 2019
    Assignee: Oracle International Corporation
    Inventors: Timothy L. Harris, Virendra J. Marathe, Martin C. Maas
  • Publication number: 20170116033
    Abstract: Multi-core computers may implement a resource management layer between the operating system and resource-management-enabled parallel runtime systems. The resource management components and runtime systems may collectively implement dynamic co-scheduling of hardware contexts when executing multiple parallel applications, using a spatial scheduling policy that grants high priority to one application per hardware context and a temporal scheduling policy for re-allocating unused hardware contexts. The runtime systems may receive resources on a varying number of hardware contexts as demands of the applications change over time, and the resource management components may co-ordinate to leave one runnable software thread for each hardware context. Periodic check-in operations may be used to determine (at times convenient to the applications) when hardware contexts should be re-allocated. Over-subscription of worker threads may reduce load imbalances between applications.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Inventors: Timothy L. Harris, Virendra J. Marathe, Martin C. Maas
  • Patent number: 9542221
    Abstract: Multi-core computers may implement a resource management layer between the operating system and resource-management-enabled parallel runtime systems. The resource management components and runtime systems may collectively implement dynamic co-scheduling of hardware contexts when executing multiple parallel applications, using a spatial scheduling policy that grants high priority to one application per hardware context and a temporal scheduling policy for re-allocating unused hardware contexts. The runtime systems may receive resources on a varying number of hardware contexts as demands of the applications change over time, and the resource management components may co-ordinate to leave one runnable software thread for each hardware context. Periodic check-in operations may be used to determine (at times convenient to the applications) when hardware contexts should be re-allocated. Over-subscription of worker threads may reduce load imbalances between applications.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 10, 2017
    Assignee: Oracle International Corporation
    Inventors: Timothy L. Harris, Virendra J. Marathe, Martin C. Maas
  • Publication number: 20160070593
    Abstract: Fast modern interconnects may be exploited to control when garbage collection is performed on the nodes (e.g., virtual machines, such as JVMs) of a distributed system in which the individual processes communicate with each other and in which the heap memory is not shared. A garbage collection coordination mechanism (a coordinator implemented by a dedicated process on a single node or distributed across the nodes) may obtain or receive state information from each of the nodes and apply one of multiple supported garbage collection coordination policies to reduce the impact of garbage collection pauses, dependent on that information. For example, if the information indicates that a node is about to collect, the coordinator may trigger a collection on all of the other nodes (e.g., synchronizing collection pauses for batch-mode applications where throughput is important) or may steer requests to other nodes (e.g., for interactive applications where request latencies are important).
    Type: Application
    Filed: May 27, 2015
    Publication date: March 10, 2016
    Inventors: Timothy L. Harris, Martin C. Maas
  • Publication number: 20150339158
    Abstract: Multi-core computers may implement a resource management layer between the operating system and resource-management-enabled parallel runtime systems. The resource management components and runtime systems may collectively implement dynamic co-scheduling of hardware contexts when executing multiple parallel applications, using a spatial scheduling policy that grants high priority to one application per hardware context and a temporal scheduling policy for re-allocating unused hardware contexts. The runtime systems may receive resources on a varying number of hardware contexts as demands of the applications change over time, and the resource management components may co-ordinate to leave one runnable software thread for each hardware context. Periodic check-in operations may be used to determine (at times convenient to the applications) when hardware contexts should be re-allocated. Over-subscription of worker threads may reduce load imbalances between applications.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 26, 2015
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Timothy L. Harris, Virendra J. Marathe, Martin C. Maas