Patents by Inventor Martin Ceredig Roberts

Martin Ceredig Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8349699
    Abstract: First and second isolation trenches are formed into semiconductive material of a semiconductor substrate. The first isolation trench has a narrowest outermost cross sectional dimension which is less than that of the second isolation trench. An insulative layer is deposited to within the first and second isolation trenches effective to fill remaining volume of the first isolation trench within the semiconductive material but not that of the second isolation trench within the semiconductive material. The insulative layer comprises silicon dioxide deposited from flowing TEOS to the first and second isolation trenches. A spin-on-dielectric is deposited over the silicon dioxide deposited from flowing the TEOS within the second isolation trench within the semiconductive material, but not within the first isolation trench within the semiconductive material. The spin-on-dielectric is deposited effective to fill remaining volume of the second isolation trench within the semiconductive material.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: January 8, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Robert D. Patraw, Martin Ceredig Roberts, Keith R. Cook
  • Patent number: 7368372
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7105881
    Abstract: The invention includes a DRAM device. The device has an access transistor construction, and the access transistor construction has a pair of source/drain regions. A halo region is associated with one of the source/drain regions of the access transistor construction and no comparable halo region is associated with the other of the source/drain regions of the access transistor construction. The invention also encompasses methods of forming DRAM devices.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Martin Ceredig Roberts
  • Patent number: 7071058
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Patent number: 7067378
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 27, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7060569
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7060570
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 6927135
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: August 9, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 6822848
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Patent number: 6800517
    Abstract: The invention includes a method of forming a conductive interconnect. An electrical node location is defined to be supported by a silicon-containing substrate. A silicide is formed in contact with the electrical node location. The silicide is formed by exposing the substrate to hydrogen, TiCl4 and plasma conditions to cause Ti from the TiCl4 to combine with silicon of the substrate to form TiSix. Conductively doped silicon material is formed over the silicide. The conductively doped silicon material is exposed to one or more temperatures of at least about 800° C. The silicide is also exposed to the temperatures of at least about 800° C.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Trung Tri Doan, Howard E. Rhodes, Sujit Sharan, Philip J. Ireland, Martin Ceredig Roberts
  • Publication number: 20040190223
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 30, 2004
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Publication number: 20040190222
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 30, 2004
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Publication number: 20040121548
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 6750089
    Abstract: The invention includes a method of forming a conductive interconnect. An electrical node location is defined to be supported by a silicon-containing substrate. A silicide is formed in contact with the electrical node location. The silicide is formed by exposing the substrate to hydrogen, TiCl4 and plasma conditions to cause Ti from the TiCl4 to combine with silicon of the substrate to form TiSix. Conductively doped silicon material is formed over the silicide. The conductively doped silicon material is exposed to one or more temperatures of at least about 800° C. The silicide is also exposed to the temperatures of at least about 800° C.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Trung Tri Doan, Howard E. Rhodes, Sujit Sharan, Philip J. Ireland, Martin Ceredig Roberts
  • Patent number: 6727139
    Abstract: Methods of electrically contacting to conductive plugs, methods of forming contact openings, and methods of forming dynamic random access memory circuitry are described. In one embodiment, a pair of conductive contact plugs are formed to project outwardly relative to a semiconductor wafer. The plugs have respective tops, one of which being covered with different first and second insulating materials. An opening is etched through one of the first and second insulating materials to expose only one of the tops of the pair of plugs. Electrically conductive material is formed within the opening and in electrical connection with the one plug. In a preferred embodiment, two-spaced apart conductive lines are formed over a substrate and conductive plugs are formed between, and on each side of the conductive lines. The conductive plug formed between the conductive lines provides a bit line contact plug having an at least partially exposed top portion.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Martin Ceredig Roberts, Kunal R. Parekh
  • Patent number: 6717201
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Patent number: 6673670
    Abstract: Capacitors, DRAM circuitry, and methods of forming the same are described. In one embodiment, a capacitor comprises a first container which is joined with a substrate node location and has an opening defining a first interior area. A second container is joined with the node location and has an opening defining a second interior area. The areas are spaced apart from one another in a non-overlapping relationship. A dielectric layer and a conductive capacitor electrode layer are disposed operably proximate the first and second containers. In another embodiment, the first and second containers are generally elongate and extend away from the node location along respective first and second central axes. The axes are different and spaced apart from one another. In yet another embodiment, a conductive layer of material is disposed over and in electrical communication with a substrate node location. The layer of material has an outer surface with a first region and a second region spaced apart from the first region.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Martin Ceredig Roberts, Christophe Pierrat
  • Patent number: 6645806
    Abstract: The invention includes a DRAM device. The device has an access transistor construction, and the access transistor construction has a pair of source/drain regions. A halo region is associated with one of the source/drain regions of the access transistor construction and no comparable halo region is associated with the other of the source/drain regions of the access transistor construction. The invention also encompasses methods of forming DRAM devices.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: November 11, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Martin Ceredig Roberts
  • Publication number: 20030124788
    Abstract: The invention includes a DRAM device. The device has an access transistor construction, and the access transistor construction has a pair of source/drain regions. A halo region is associated with one of the source/drain regions of the access transistor construction and no comparable halo region is associated with the other of the source/drain regions of the access transistor construction. The invention also encompasses methods of forming DRAM devices.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 3, 2003
    Inventor: Martin Ceredig Roberts
  • Publication number: 20030119244
    Abstract: The invention includes a method of forming a conductive interconnect. An electrical node location is defined to be supported by a silicon-containing substrate. A silicide is formed in contact with the electrical node location. The silicide is formed by exposing the substrate to hydrogen, TiCl4 and plasma conditions to cause Ti from the TiCl4 to combine with silicon of the substrate to form TiSix. Conductively doped silicon material is formed over the silicide. The conductively doped silicon material is exposed to one or more temperatures of at least about 800° C. The silicide is also exposed to the temperatures of at least about 800° C.
    Type: Application
    Filed: January 30, 2003
    Publication date: June 26, 2003
    Inventors: Gurtej S. Sandhu, Trung Tri Doan, Howard E. Rhodes, Sujit Sharan, Philip J. Ireland, Martin Ceredig Roberts