Patents by Inventor Martin Cholette

Martin Cholette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11779755
    Abstract: A system and method for providing electrical stimulation to biological tissue to treat medical conditions. The system can include a lead configured to be positioned in contact with biological tissue proximate one or more occipital nerves, an implantable pulse generator configured to deliver electrical stimulation to the biological tissue via the one or more leads, and/or a power source configured to operatively connect and supply power to the implantable pulse generator. The system can further include a processor configured to communicate with the implantable pulse generator. The processor can operate the implantable pulse generator to deliver the electrical stimulation to the biological tissue via the lead. The implantable pulse generator can deliver the electrical stimulation by applying a stimulation waveform or a stimulation pattern. The stimulation waveform can include a series of stimulation pulses that can vary over time, which can reduce an effect of neural accommodation or adaptation.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: October 10, 2023
    Assignee: NeoGenesis Technologies LLC
    Inventors: Martin Cholette, Gary Dulak
  • Patent number: 10376310
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 13, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Publication number: 20180369573
    Abstract: A system and method for providing electrical stimulation to biological tissue to treat medical conditions. The system can include a lead configured to be positioned in contact with biological tissue proximate one or more occipital nerves, an implantable pulse generator configured to deliver electrical stimulation to the biological tissue via the one or more leads, and/or a power source configured to operatively connect and supply power to the implantable pulse generator. The system can further include a processor configured to communicate with the implantable pulse generator. The processor can operate the implantable pulse generator to deliver the electrical stimulation to the biological tissue via the lead. The implantable pulse generator can deliver the electrical stimulation by applying a stimulation waveform or a stimulation pattern. The stimulation waveform can include a series of stimulation pulses that can vary over time, which can reduce an effect of neural accommodation or adaptation.
    Type: Application
    Filed: April 24, 2018
    Publication date: December 27, 2018
    Inventors: Martin Cholette, Gary Dulak
  • Patent number: 9974477
    Abstract: A renal denervation catheter includes a catheter shaft, at least one ablation member, and a sensor, and is operable to perform a renal denervation procedure. The catheter shaft includes a distal end portion insertable into a renal artery. The at least one ablation member is positioned at the distal end portion of the catheter shaft and operable to ablate renal nerves along a wall of the renal artery. The sensor provides information that correlates to blood flow in the renal artery. A change in blood flow rate in the renal artery resulting from the ablation is indicative of the efficacy of the renal denervation procedure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 22, 2018
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Martin Cholette, Sergio Shkurovich
  • Patent number: 9872980
    Abstract: The present disclosure provides neurostimulation systems and methods. A neurostimulation system includes at least one anode, at least one cathode, the at least one anode and the at least one cathode configured to apply electrical stimulation to a patient, and a controller electrically coupled to the at least one anode and the at least one cathode, the controller configured to determine when one of the at least one anode and the at least one cathode fails, measure, in response to the determination, a quantity indicative of a charge density of the applied electrical stimulation, compare the measured quantity to a predetermined limit, and perform at least one action when the measured quantity exceeds the predetermined limit.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 23, 2018
    Assignee: PACESETTER, INC.
    Inventors: Lanitia Ness, Martin Cholette
  • Publication number: 20180014882
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9801684
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 31, 2017
    Assignee: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Publication number: 20160331453
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Publication number: 20160303379
    Abstract: The present disclosure provides neurostimulation systems and methods. A neurostimulation system includes at least one anode, at least one cathode, the at least one anode and the at least one cathode configured to apply electrical stimulation to a patient, and a controller electrically coupled to the at least one anode and the at least one cathode, the controller configured to determine when one of the at least one anode and the at least one cathode fails, measure, in response to the determination, a quantity indicative of a charge density of the applied electrical stimulation, compare the measured quantity to a predetermined limit, and perform at least one action when the measured quantity exceeds the predetermined limit.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Lanitia Ness, Martin Cholette
  • Patent number: 9427579
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 30, 2016
    Assignee: PACESETTER, INC.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 9180293
    Abstract: An exemplary method for treating obesity includes an pulse generator configured to deliver electrical energy to a vagal nerve, one or more sensors configured to detect pre-prandial activity and, in response to the detection of pre-prandial activity, a pulse generator configured to deliver electrical energy to the stomach to induce satiety. Various other technologies are also disclosed.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 10, 2015
    Assignee: Pacesetter, Inc.
    Inventor: Martin Cholette
  • Patent number: 9044610
    Abstract: Techniques are provided for controlling and delivering spinal cord stimulation (SCS) or other forms of neurostimulation. In one example, neurostimulation pulses are generated wherein successive pulses alternate in polarity so that a pair of electrodes alternate as cathodes. Each pulse has a cathodic amplitude sufficient to achieve cathodic capture of tissues adjacent the particular electrode used as the cathode for the pulse. The neurostimulation pulses are delivered to patient tissues using the electrodes to alternatingly capture tissues adjacent opposing electrodes via cathodic capture to achieve a distributed virtual stimulation cathode. Various pulse energy savings techniques are also set forth that exploit the distributed virtual stimulation cathode.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 2, 2015
    Assignee: PACESETTER, INC.
    Inventors: Stuart Rosenberg, Martin Cholette, Xiaoyi Min
  • Patent number: 8923965
    Abstract: Systems and methods are provided wherein intracardiac electrogram (IEGM) signals are used to determine a set of preliminary optimized atrioventricular (AV/PV) and interventricular (VV) pacing delays. In one example, the preliminary optimized AV/VV pacing delays are used as a starting point for further optimization based on impedance signals such as impedance signals detected between a superior vena cava (SVC) coil electrode and a device housing electrode, which are influenced by changes in stroke volume within the patient. Ventricular pacing is thereafter delivered using the AV/VV pacing delays optimized via impedance. In another example, parameters derived from IEGM signals are used to limit the scope of an impedance-based optimization search to reduce the number of pacing tests needed during impedance-based optimization. Biventricular and multi-site left ventricular (MSLV) examples are described.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 30, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Gene A. Bornzin, Martin Cholette, Kyungmoo Ryu, Catherine Tan
  • Patent number: 8868184
    Abstract: A set of cardiogenic impedance signals are detected along different sensing vectors passing through the heart of the patient, particularly vectors passing through the ventricular myocardium. A measure of mechanical dyssynchrony is detected based on differences, if any, among the cardiogenic impedance signals detected along the different vectors. In particular, differences in peak magnitude delay times, peak velocity delay times, peak magnitudes, and waveform integrals of the cardiogenic impedance signals are quantified and compared to detect abnormally contracting segments, if any, within the heart of the patient. Warnings are generated upon detection of any significant increase in mechanical dyssynchrony. Diagnostic information is recorded for clinical review. Pacing therapies such as cardiac resynchronization therapy (CRT) can be activated or controlled in response to mechanical dyssynchrony to improve the hemodynamic output of the heart.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: October 21, 2014
    Assignee: Pacesetter, Inc.
    Inventor: Martin Cholette
  • Publication number: 20140277259
    Abstract: Techniques are provided for controlling and delivering spinal cord stimulation (SCS) or other forms of neurostimulation. In one example, neurostimulation pulses are generated wherein successive pulses alternate in polarity so that a pair of electrodes alternate as cathodes. Each pulse has a cathodic amplitude sufficient to achieve cathodic capture of tissues adjacent the particular electrode used as the cathode for the pulse. The neurostimulation pulses are delivered to patient tissues using the electrodes to alternatingly capture tissues adjacent opposing electrodes via cathodic capture to achieve a distributed virtual stimulation cathode. Various pulse energy savings techniques are also set forth that exploit the distributed virtual stimulation cathode.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 18, 2014
    Applicant: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Martin Cholette, Xiaoyi Min
  • Publication number: 20140276124
    Abstract: A renal denervation catheter includes a catheter shaft, at least one ablation member, and a sensor, and is operable to perform a renal denervation procedure. The catheter shaft includes a distal end portion insertable into a renal artery. The at least one ablation member is positioned at the distal end portion of the catheter shaft and operable to ablate renal nerves along a wall of the renal artery. The sensor provides information that correlates to blood flow in the renal artery. A change in blood flow rate in the renal artery resulting from the ablation is indicative of the efficacy of the renal denervation procedure.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Martin Cholette, Sergio Shkurovich
  • Patent number: 8838241
    Abstract: Stimulation of a patient's nervous system is controlled based on cardiovascular risk assessment performed by an implantable medical device. For example, an implantable medical device may monitor cardiac electrical activity to detect changes in the ST segment. Upon detection of a certain change in the ST segment, the implantable medical device controls the application of spinal cord stimulation and/or other neurostimulation to cardiac-related sections of the patient's nervous system. In some embodiments, the implantable medical device communicates with a separate neurostimulation device to control the neurostimulation. In some embodiments, the implantable medical device delivers the neurostimulation.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Lanitia Ness, Martin Cholette
  • Publication number: 20140243920
    Abstract: Stimulation of a patient's nervous system is controlled based on cardiovascular risk assessment performed by an implantable medical device. For example, an implantable medical device may monitor cardiac electrical activity to detect changes in the ST segment. Upon detection of a certain change in the ST segment, the implantable medical device controls the application of spinal cord stimulation and/or other neurostimulation to cardiac-related sections of the patient's nervous system. In some embodiments, the implantable medical device communicates with a separate neurostimulation device to control the neurostimulation. In some embodiments, the implantable medical device delivers the neurostimulation.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: PACESETTER, INC.
    Inventors: Lanitia Ness, Martin Cholette
  • Patent number: 8649851
    Abstract: The invention is directed towards measuring current of injury (COI) during lead fixation. A baseline waveform is sensed from a lead while the lead is in a pre-fixation position. The baseline waveform represents an interface between the lead and tissue proximate a lead prior to active fixation. Cardiac signals are then sensed when the lead is in a post-fixation position. The post-fixation waveform represents an interface between the lead and the tissue once the lead is actively attached to the tissue. A COI is calculated based on an automatic comparison of the baseline and post-fixation waveforms. A COI feature of interest is identified in the baseline and post-fixation waveforms and a COI index, a COI area, a COI differential and/or a COI ratio is calculated based on the COI feature of interest in the baseline and post-fixation waveforms.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: February 11, 2014
    Assignee: Pacesetter, Inc.
    Inventor: Martin Cholette
  • Publication number: 20130345772
    Abstract: An exemplary method for treating obesity includes an pulse generator configured to deliver electrical energy to a vagal nerve, one or more sensors configured to detect pre-prandial activity and, in response to the detection of pre-prandial activity, a pulse generator configured to deliver electrical energy to the stomach to induce satiety. Various other technologies are also disclosed.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 26, 2013
    Inventor: Martin Cholette