Patents by Inventor Martin Deckert

Martin Deckert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11982699
    Abstract: A system and method for testing devices such as integrated circuits (IC) with integrated antenna arrays configured for wireless signal reception. The method performs a calibration operation on a reference device under test (DUT). During the calibration operation, the DUT receives a series of first signals from a first far-field (FF) location and a series of array transmissions from a second near-field (NF) location using different beamforming settings, and determines therefrom a set of calibration parameters. The calibration parameters may be used by a probe antenna system (PAS) to transmit an array transmission to the DUT from the second NF location to emulate a single probe or multi-probe transmission from the first FF location.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: May 14, 2024
    Assignee: National Instruments Corporation
    Inventors: Martin Obermaier, Martin Laabs, Dirk Plettemeier, Marc Vanden Bossche, Thomas Deckert, Vincent Kotzsch, Johannes Dietmar Herbert Lange
  • Publication number: 20220015640
    Abstract: The invention relates to an image-capturing device for the miniaturized near-field image capture of biological tissue, in particular for the imaging of genetic indicators. The image-capturing device comprises at least one digital image sensor and an objective lens in the form of a rod-shaped gradient index lens (GRIN), which objective lens is coupled to the digital image sensor for image capture. The objective lens is connected to the digital image sensor to from a monolithic, fixed assembly. There is no mechanical separating interface between the objective lens and the digital image sensor by means of which the digital image sensor can be separated from the objective lens by the user. The invention further relates to a system for the miniaturized near-field image capture of biological tissue, said system comprising an image-capturing device of this type and an evaluation device connected to the image-capturing device.
    Type: Application
    Filed: October 16, 2019
    Publication date: January 20, 2022
    Inventors: Michael LIPPERT, Martin DECKERT, Frank W. OHL, Bertram SCHMIDT
  • Patent number: 11097125
    Abstract: A micro-electrode array (1) comprising a flexible substrate (2) and a multiplicity of electrodes (3) for electrically measuring neural activity is described. The electrodes (3) are arranged on the substrate (2), project from the plane of the substrate (2) and have a core (4). A plurality of measurement lines (9) that are electrically insulated from one another are arranged around the core (4). Adjacent to the end surface (7) of the core (4), at the end of the electrodes (3) there are a plurality of electrode surfaces (8) arranged in a manner distributed spatially around the end surface (7), said electrode surfaces in each case being electrically conductively connected to an associated measurement line (9). The micro-electrode array (1) is passivated with a polymer-containing material, such as e.g. polyimide, such that only the electrodes (3) electrically contact neural tissue with their electrode surfaces (8, E1, E2).
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 24, 2021
    Assignees: LEIBNIZ-INSTITUT FUER NEUROBIOLOGIE MAGDEBURG, OTTO-VON-GUERICKE UNIVERSITAT MAGDEBURG
    Inventors: Martin Deckert, Michael Lippert, Bertram Schmidt, Frank Ohl, Armin Dadgar
  • Patent number: 10966624
    Abstract: The invention relates to a method for obtaining brain wave data using a microelectrode array, comprising a plurality of electrodes for electrically measuring brain waves and an integrated optical stimulation unit for stimulating brain regions by means of optical signals, wherein the stimulation unit has one or more electrical light sources, and wherein the method includes stimulating neurons of the brain via optical signals produced by the light sources, recording a response of the neurons to the stimulation via the electrodes, unambiguously assigning the recorded response to individual optical stimulation signals provided by the light source, and determining an unambiguous correlation between the optical stimulation signals and resulting brain waves measured by the electrodes.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 6, 2021
    Assignees: Leibniz-Institut Für Neurobiologie, Otto-Von-Guericke-Universität
    Inventors: Frank Ohl, Michael Lippert, Sören Hirsch, Bertram Schmidt, Martin Deckert
  • Publication number: 20190192032
    Abstract: The invention relates to a microelectrode array, comprising a plurality of electrodes for electrically measuring brain waves and an integrated optical stimulation unit for stimulating brain regions by means of optical signals, wherein the stimulation unit has one or more electrical light sources.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 27, 2019
    Inventors: Frank Ohl, Michael Lippert, Sören Hirsch, Bertram Schmidt, Martin Deckert
  • Publication number: 20190091483
    Abstract: A micro-electrode array (1) comprising a flexible substrate (2) and a multiplicity of electrodes (3) for electrically measuring neural activity is described. The electrodes (3) are arranged on the substrate (2), project from the plane of the substrate (2) and have a core (4). A plurality of measurement lines (9) that are electrically insulated from one another are arranged around the core (4). Adjacent to the end surface (7) of the core (4), at the end of the electrodes (3) there are a plurality of electrode surfaces (8) arranged in a manner distributed spatially around the end surface (7), said electrode surfaces in each case being electrically conductively connected to an associated measurement line (9). The micro-electrode array (1) is passivated with a polymer-containing material, such as e.g. polyimide, such that only the electrodes (3) electrically contact neural tissue with their electrode surfaces (8, E1, E2).
    Type: Application
    Filed: March 13, 2017
    Publication date: March 28, 2019
    Inventors: Martin DECKERT, Michael LIPPERT, Bertram SCHMIDT, Frank OHL, Armin DADGAR
  • Publication number: 20150289778
    Abstract: A first plurality of images of a scene may be captured. Each image of the first plurality of images may be captured using a different TET. Based at least on the first plurality of images, a long TET, a short TET, and a TET sequence that includes the long TET and the short TET may be determined. A second plurality of images of the scene may be captured. The images in the second plurality of images may be captured sequentially in an image sequence using a sequence of TETs corresponding to the TET sequence. Based on one or more images in the image sequence, an output image may be constructed.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 15, 2015
    Applicants: Leibniz-Institut für Neurobiologie, Otto-Von-Guericke-Universität
    Inventors: Frank Ohl, Michael Lippert, Sören Hirsch, Bertram Schmidt, Martin Deckert