Patents by Inventor Martin Dieterle

Martin Dieterle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210316388
    Abstract: A method for resistance welding includes performing a plurality of resistance welding processes during which welding electrodes are pressed against respective welding spots of respective workpieces. The welding electrodes are energized with a respective welding current for each of the plurality of resistance welding processes, and for each of the plurality of resistance welding processes, a respective at least one characteristic value that characterizes a quality of the welding is determined. A statistical analysis of the determined at least one characteristic value for each of the plurality of resistance welding processes is performed, and based upon the analysis, an adaptation of the prescribed welding parameters is determined.
    Type: Application
    Filed: March 12, 2021
    Publication date: October 14, 2021
    Inventors: Baifan Zhou, Damir Shakirov, Fabian Bleier, Juergen Haeufgloeckner, Martin Dieterle, Sean McConnell, Sinisa Slavnic, Tim Pychynski
  • Publication number: 20200181044
    Abstract: The invention relates to a process (10) for the production of propylene which comprises carrying out a process (1) for propane dehydrogenation to obtain a first component mixture (A), carrying out a further propylene production method (2) to obtain a second component mixture (B), and forming a separation product (P2) containing predominantly propane using one or more propane separation steps (S1), wherein at least part of the first component mixture (A) is supplied to the propane separation step or steps (S1). It is envisaged that the separation product (P2), which mainly contains propane, will at least partly be returned to the further propylene production method (2). A corresponding plant and a process for converting a steam cracking plant are also the subject of the invention.
    Type: Application
    Filed: July 12, 2018
    Publication date: June 11, 2020
    Inventors: Torben HÖFEL, Christine TÖGEL, Mathieu ZELLHUBER, Heinrich LAIB, Stefan KOTREL, Martin DIETERLE, Florina Corina PATCAS, Sonja GIESA
  • Publication number: 20200165177
    Abstract: The invention concerns a process (10) for the production of propylene, which comprises carrying out a process (1) for propane dehydrogenation to obtain a first component mixture (A), carrying out a steam cracking process (2) to obtain a second component mixture (B), forming a first separation product (P1) which contains at least predominantly propylene using one or more first separation steps (S1), forming a second separation product (P2) containing at least predominantly propane using the first separation step(s) (S1), forming a third separation product (P3) containing at least predominantly ethylene using one or more second separation steps (S2) and forming a fourth separation product (P4) containing at least predominantly ethane using the second separation step(s) (S1).
    Type: Application
    Filed: July 12, 2018
    Publication date: May 28, 2020
    Inventors: Torben HÖFEL, Christine TÖGEL, Mathieu ZELLHUBER, Heinrich LAIB, Stefan KOTREL, Martin DIETERLE, Florina Corina PATCAS, Sonja GIESA
  • Patent number: 10336667
    Abstract: The present invention relates to a catalyst for the dehydrogenation of hydrocarbons which is based on iron oxide and a process for producing it. The catalyst comprises at least one iron compound, at least one potassium compound and from 11 to 24% by weight of at least one cerium compound, calculated as CeO2, wherein the at least one iron compound and the at least one potassium compound are at least partly present in the form of one or more K/Fe mixed oxide phases of the general formula KxFeyOz, where x is from 1 to 17; y is from 1 to 22 and z is from 2 to 34, and comprises at least 50% by weight, based on the total catalyst, of the K/Fe mixed oxide phases, and also a process for producing it.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: July 2, 2019
    Assignee: BASF SE
    Inventors: Florina C. Patcas, Martin Dieterle
  • Patent number: 10315970
    Abstract: The present invention relates to a catalyst based on iron oxide for the dehydrogenation of hydrocarbons and also a process for producing it. The catalyst comprises at least one iron compound, at least one potassium compound and at least one cerium compound, wherein the at least one iron compound and the at least one potassium compound are at least partly present in the form of one or more K/Fe mixed oxide phases of the general formula KxFeyOz, where x is from 1 to 17; y is from 1 to 22 and z is from 2 to 34, where the catalyst comprises at least 20% by weight, based on the total catalyst, of the K/Fe mixed oxide phases and comprises crystalline cerium dioxide having a crystallite size in the range from 10 nm to 30 nm.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: June 11, 2019
    Assignee: BASF SE
    Inventors: Florina C. Patcas, Bernd Hinrichsen, Martin Dieterle
  • Publication number: 20190041833
    Abstract: Production plant (1) for producing at least one end product (3) from at least one primary starting material (2), comprising at least one processing station (41-43) which processes at least one starting material (21-23) to form at least one product (31, 32, 33), and a process controller (51-53) which can control at least one variable (71-73), which is a measure of a quality feature of the product (31-33) and/or is correlated with a quality feature of the product (31-33), by influencing at least one manipulated variable (61-63) acting on the processing station (41-43), wherein the process controller (51-53) is additionally designed to control the production rate (31a-33a) of the processing station (41-43) for the product (31-33) and/or the consumption rate (21a-23a) of the processing station (41-43) with regard to starting material (21-23) by acting on the manipulated variable (61-63).
    Type: Application
    Filed: December 14, 2016
    Publication date: February 7, 2019
    Inventors: Michael Walther, Christian Kircher, Josef Kleckner, Marcus Hlavac, Martin Schoepf, Martin Dieterle, Wolfgang Arnold
  • Publication number: 20180169628
    Abstract: The present invention relates to a catalyst for the dehydrogenation of hydrocarbons which is based on iron oxide and additionally comprises at least one potassium compound, at least one cerium compound, from 0.7 to 10% by weight of at least one manganese compound, calculated as Mn02, and from 10 to 200 ppm of at least one titanium compound, calculated as TiO2, and also to a process for the production thereof. Furthermore, the present invention relates to a process for the catalytic dehydrogenation of hydrocarbons using the catalyst of the invention.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 21, 2018
    Inventors: Florina Corina Patcas, Christophe Houssin, Martin Dieterle
  • Patent number: 9695099
    Abstract: The present invention relates to a process for preparing acrylic acid from acetic acid and formaldehyde, which comprises (a) provision of a stream S1 comprising acetic acid and formaldehyde, where the molar ratio of acetic acid to formaldehyde in the stream S1 is in the range from 0.5:1 to 2:1; (b) contacting of the stream S1 with an aldol condensation catalyst comprising vanadium, phosphorus and oxygen to give a stream S2 comprising acrylic acid, where, in (b), the space velocity WHSV is in the range from 0.35 to 7.0 kg/kg/h.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 4, 2017
    Assignee: BASF SE
    Inventors: Yong Liu, Martin Dieterle, Nicolai Tonio Woerz, Andrei-Nicolae Parvulescu, Michael Lejkowski, Johannes Lieberknecht, Christian Walsdorff, Kazuhiko Amakawa
  • Patent number: 9657625
    Abstract: Provided are selective catalytic reduction catalytic articles, emission treatment systems and methods for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalytic articles have a Selective Catalytic Reduction (SCR) catalyst uniformly coated over the outlet portion of wall flow filter walls resulting in reduction of NO2 and combustion of the soot without substantially increasing the system backpressure.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 23, 2017
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Publication number: 20170128916
    Abstract: An oxidic composition comprising vanadium, tungsten, phosphorus, oxygen and optionally tin, where the molar ratio of phosphorus to the sum total of vanadium, tungsten and any tin in the oxidic composition is in the range from 1.4:1 to 2.4:1.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 11, 2017
    Applicant: BASF SE
    Inventors: Michael LEJKOWSKI, Yong LIU, Marco HARTMANN, Till Christian BRUEGGEMANN, Lukas SCHULZ, Johannes LIEBERKNECHT, Armin LANGE DE OLIVEIRA, Stephan A. SCHUNK, Andrei-Nicolae PARVULESCU, Martin DIETERLE, Nicolai Tonio WOERZ, Rolf TOMPERS, Robert MUELLER
  • Publication number: 20170121241
    Abstract: The present invention relates to a catalyst based on iron oxide for the dehydrogenation of hydrocarbons and also a process for producing it. The catalyst comprises at least one iron compound, at least one potassium compound and at least one cerium compound, wherein the at least one iron compound and the at least one potassium compound are at least partly present in the form of one or more K/Fe mixed oxide phases of the general formula KxFeyOz, where x is from 1 to 17; y is from 1 to 22 and z is from 2 to 34, where the catalyst comprises at least 20% by weight, based on the total catalyst, of the K/Fe mixed oxide phases and comprises crystalline cerium dioxide having a crystallite size in the range from 10 nm to 30 nm.
    Type: Application
    Filed: May 6, 2015
    Publication date: May 4, 2017
    Applicant: BASF SE
    Inventors: Florina C. PATCAS, Bernd HINRICHSEN, Martin DIETERLE
  • Publication number: 20170073284
    Abstract: The present invention relates to a catalyst for the dehydrogenation of hydrocarbons which is based on iron oxide and a process for producing it. The catalyst comprises at least one iron compound, at least one potassium compound and from 11 to 24% by weight of at least one cerium compound, calculated as CeO2, wherein the at least one iron compound and the at least one potassium compound are at least partly present in the form of one or more K/Fe mixed oxide phases of the general formula KxFeyOz, where x is from 1 to 17; y is from 1 to 22 and z is from 2 to 34, and comprises at least 50% by weight, based on the total catalyst, of the K/Fe mixed oxide phases, and also a process for producing it.
    Type: Application
    Filed: May 6, 2015
    Publication date: March 16, 2017
    Inventors: FLORINA C. PATCAS, Martin DIETERLE
  • Patent number: 9475002
    Abstract: Catalytic articles, methods and emissions treatment systems for treating an engine exhaust gas stream containing NOx and particulate matter are disclosed and include a particulate filter comprising a first SCR catalyst for NOx conversion disposed downstream of the injector. The particulate filter is a partial filter with a particle filtration efficiency between about 30% and 60% and an SCR catalyst loading in the range of 0.1 g/in3-3.5 g/in3.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 25, 2016
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Kenneth E. Voss, Martin Dieterle
  • Publication number: 20160152541
    Abstract: The present invention relates to a process for preparing acrylic acid from acetic acid and formaldehyde, which comprises (a) provision of a stream S1 comprising acetic acid and formaldehyde, where the molar ratio of acetic acid to formaldehyde in the stream S1 is in the range from 0.5:1 to 2:1; (b) contacting of the stream S1 with an aldol condensation catalyst comprising vanadium, phosphorus and oxygen to give a stream S2 comprising acrylic acid, where, in (b), the space velocity WHSV is in the range from 0.35 to 7.0 kg/kg/h.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 2, 2016
    Applicant: BASF SE
    Inventors: Yong LIU, Martin DIETERLE, Nicolai Tonio WOERZ, Andrei-Nicolae PARVULESCU, Michael LEJKOWSKI, Johannes LIEBERKNECHT, Christian WALSDORFF, Kazuhiko AMAKAWA
  • Patent number: 9352306
    Abstract: The catalyst comprises from 0.01 to 0.5% by weight of platinum, based on the catalyst, and optionally tin, with the weight ratio of Sn:Pt being from 0 to 10, on zeolite A as support.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: May 31, 2016
    Assignee: BASF SE
    Inventors: Alireza Rezai, Gauthier Luc Maurice Averlant, Petr Kubanek, Martin Dieterle, Thomas Heidemann
  • Patent number: 9352307
    Abstract: Described is a catalyst, preferably for use in selective catalytic reduction (SCR), said catalyst comprising one or more zeolites of the MFI structure type, and one or more zeolites of the CHA structure type, wherein at least part of the one or more zeolites of the MFI structure type contain iron (Fe), and wherein at least part of the one or more zeolites of the CHA structure type contain copper (Cu). An exhaust gas treatment system is described, comprising said catalyst as well as a process for the treatment of a gas stream comprising NOx using said catalyst as well.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 31, 2016
    Assignee: BASF Corporation
    Inventors: Susanne Stiebels, Claudia Wendt, Torsten Neubauer, Martin Dieterle, Jaya L. Mohanan
  • Patent number: 9216395
    Abstract: A process for charging a longitudinal section of a catalyst tube with a homogeneous fixed catalyst bed section whose active composition is at least one multielement oxide or comprises elemental silver on an oxidic support body and whose geometric shaped catalyst bodies and shaped inert bodies have a specific inhomogeneity of their longest dimensions.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 22, 2015
    Assignee: BASF SE
    Inventors: Martin Dieterle, Klaus Joachim Mueller-Engel
  • Publication number: 20140316181
    Abstract: In a process for removing oxygen from a C4-hydrocarbon stream comprising free oxygen by catalytic combustion, in which the hydrocarbon stream comprising free oxygen is reacted by catalytic combustion over a catalyst bed in the presence or absence of free hydrogen to give an oxygen-depleted hydrocarbon stream, the catalytic combustion is carried out continuously, the entry temperature in the catalyst bed is at least 300° C. and the maximum temperature in the catalyst bed is not more than 700° C.
    Type: Application
    Filed: February 21, 2014
    Publication date: October 23, 2014
    Applicant: BASF SE
    Inventors: Gauthier Luc Maurice Averlant, Alireza Rezai, Sonja Giesa, Martin Dieterle
  • Patent number: 8721996
    Abstract: A shell which encloses an interior and has at least one first orifice for feeding at least one gas stream into the interior and at least one second orifice for withdrawing a gas stream fed to the interior beforehand via the at least one first orifice from the interior, the surface of the shell, on its side in contact with the interior, being manufactured at least partly, in a layer thickness of at least 1 mm, from a steel which has a specific elemental composition, and in the interior, a process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated is carried out in a reactor which is manufactured from the steel on its side in contact with the reaction gas.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: May 13, 2014
    Assignee: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Goetz-Peter Schindler, Catharina Klanner, Hans-Juergen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Mueller-Engel
  • Patent number: 8721997
    Abstract: A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a composite material which consists, on its side in contact with the reaction chamber, of a steel B with specific elemental composition which, on its side facing away from the reaction chamber, either directly or via an intermediate layer of copper, or of nickel, or of copper and nickel, is plated onto a steel A with specific elemental composition, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: May 13, 2014
    Assignee: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Goetz-Peter Schindler, Catharina Klanner, Hans-Juergen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Mueller-Engel