Patents by Inventor Martin F. Schubert

Martin F. Schubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670738
    Abstract: Solid-state radiation transducer (SSRT) devices having buried contacts that are at least partially transparent and associated systems and methods are disclosed herein. An SSRT device configured in accordance with a particular embodiment can include a radiation transducer including a first semiconductor material, a second semiconductor material, and an active region between the first semiconductor material and the second semiconductor material. The SSRT device can further include first and second contacts electrically coupled to the first and second semiconductor materials, respectively. The second contact can include a plurality of buried-contact elements electrically coupled to the second semiconductor material. Individual buried-contact elements can have a transparent portion directly adjacent to the second semiconductor material. The second contact can further include a base portion extending between the buried-contact elements, such as a base portion that is least partially planar and reflective.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Lifang Xu
  • Patent number: 11631780
    Abstract: Various embodiments of solid state transducer (“SST”) devices are disclosed. In several embodiments, a light emitter device includes a metal-oxide-semiconductor (MOS) capacitor, an active region operably coupled to the MOS capacitor, and a bulk semiconductor material operably coupled to the active region. The active region can include at least one quantum well configured to store first charge carriers under a first bias. The bulk semiconductor material is arranged to provide second charge carriers to the active region under the second bias such that the active region emits UV light.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20230109959
    Abstract: Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 13, 2023
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 11621372
    Abstract: Solid state lighting (“SSL”) devices with improved current spreading and light extraction and associated methods are disclosed herein. In one embodiment, an SSL device includes a solid state emitter (“SSE”) that has a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device can further include a first contact on the first semiconductor material and a second contact on the second semiconductor material and opposite the first contact. The second contact can include one or more interconnected fingers. Additionally, the SSL device can include an insulative feature extending from the first contact at least partially into the first semiconductor material. The insulative feature can be substantially aligned with the second contact.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 4, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 11581405
    Abstract: Methods of manufacturing device assemblies, as well as associated semiconductor assemblies, devices, systems are disclosed herein. In one embodiment, a method of forming a semiconductor device assembly includes forming a semiconductor device assembly that includes a handle substrate, a semiconductor structure having a first side and a second side opposite the first side, and an intermediary material between the semiconductor structure and the handle substrate. The method also includes removing material from the semiconductor structure to form an opening extending from the first side of the semiconductor structure to at least the intermediary material at the second side of the semiconductor structure. The method further includes removing at least a portion of the intermediary material through the opening in the semiconductor structure to undercut the second side of the semiconductor structure.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: February 14, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Cem Basceri
  • Patent number: 11563158
    Abstract: Solid-state transducers (“SSTs”) and vertical high voltage SSTs having buried contacts are disclosed herein. An SST die in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the transducer structure, and a second semiconductor material at a second side of the transducer structure. The SST can further include a plurality of first contacts at the first side and electrically coupled to the first semiconductor material, and a plurality of second contacts extending from the first side to the second semiconductor material and electrically coupled to the second semiconductor material. An interconnect can be formed between at least one first contact and one second contact. The interconnects can be covered with a plurality of package materials.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 11469350
    Abstract: Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 11, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20220320402
    Abstract: High-voltage solid-state transducer (SST) devices and associated systems and methods are disclosed herein. An SST device in accordance with a particular embodiment of the present technology includes a carrier substrate, a first terminal, a second terminal and a plurality of SST dies connected in series between the first and second terminals. The individual SST dies can include a transducer structure having a p-n junction, a first contact and a second contact. The transducer structure forms a boundary between a first region and a second region with the carrier substrate being in the first region. The first and second terminals can be configured to receive an output voltage and each SST die can have a forward junction voltage less than the output voltage.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Inventor: Martin F. Schubert
  • Patent number: 11367822
    Abstract: High-voltage solid-state transducer (SST) devices and associated systems and methods are disclosed herein. An SST device in accordance with a particular embodiment of the present technology includes a carrier substrate, a first terminal, a second terminal and a plurality of SST dies connected in series between the first and second terminals. The individual SST dies can include a transducer structure having a p-n junction, a first contact and a second contact. The transducer structure forms a boundary between a first region and a second region with the carrier substrate being in the first region. The first and second terminals can be configured to receive an output voltage and each SST die can have a forward junction voltage less than the output voltage.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: June 21, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Martin F. Schubert
  • Publication number: 20220165784
    Abstract: Solid state transducer devices having integrated electrostatic discharge protection and associated systems and methods are disclosed herein. In one embodiment, a solid state transducer device includes a solid state emitter, and an electrostatic discharge device carried by the solid state emitter. In some embodiments, the electrostatic discharge device and the solid state emitter share a common first contact and a common second contact. In further embodiments, the solid state lighting device and the electrostatic discharge device share a common epitaxial substrate. In still further embodiments, the electrostatic discharge device is positioned between the solid state lighting device and a support substrate.
    Type: Application
    Filed: December 1, 2021
    Publication date: May 26, 2022
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20220149248
    Abstract: Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods are disclosed. A solid state radiative semiconductor structure in accordance with a particular embodiment includes a first region having a first value of a material characteristic and being positioned to receive radiation at a first wavelength. The structure can further include a second region positioned adjacent to the first region to emit radiation at a second wavelength different than the first wavelength. The second region has a second value of the material characteristic that is different than the first value, with the first and second values of the characteristic forming a potential gradient to drive electrons, holes, or both electrons and holes in the radiative structure from the first region to the second region. In a further particular embodiment, the material characteristic includes material polarization.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 12, 2022
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20220084992
    Abstract: Solid-state transducer (“SST”) dies and SST arrays having electrical cross-connections are disclosed herein. An array of SST dies in accordance with a particular embodiment can include a first terminal, a second terminal and a plurality of SST dies coupled between the first and second terminals with at least a pair of the SST dies being coupled in parallel. The plurality of SST dies can individually include a plurality of junctions coupled in series with an interconnection between each individual junction. Additionally, the individual SST dies can have a cross-connection contact coupled to the interconnection. In one embodiment, the array can further include a cross-connection between the cross-connection contacts on the pair of the SST dies.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventor: Martin F. Schubert
  • Patent number: 11233179
    Abstract: Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods are disclosed. A solid state radiative semiconductor structure in accordance with a particular embodiment includes a first region having a first value of a material characteristic and being positioned to receive radiation at a first wavelength. The structure can further include a second region positioned adjacent to the first region to emit radiation at a second wavelength different than the first wavelength. The second region has a second value of the material characteristic that is different than the first value, with the first and second values of the characteristic forming a potential gradient to drive electrons, holes, or both electrons and holes in the radiative structure from the first region to the second region. In a further particular embodiment, the material characteristic includes material polarization.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: January 25, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 11195876
    Abstract: Solid state transducer devices having integrated electrostatic discharge protection and associated systems and methods are disclosed herein. In one embodiment, a solid state transducer device includes a solid state emitter, and an electrostatic discharge device carried by the solid state emitter. In some embodiments, the electrostatic discharge device and the solid state emitter share a common first contact and a common second contact. In further embodiments, the solid state lighting device and the electrostatic discharge device share a common epitaxial substrate. In still further embodiments, the electrostatic discharge device is positioned between the solid state lighting device and a support substrate.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: December 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 11183486
    Abstract: Solid-state transducer (“SST”) dies and SST arrays having electrical cross-connections are disclosed herein. An array of SST dies in accordance with a particular embodiment can include a first terminal, a second terminal and a plurality of SST dies coupled between the first and second terminals with at least a pair of the SST dies being coupled in parallel. The plurality of SST dies can individually include a plurality of junctions coupled in series with an interconnection between each individual junction. Additionally, the individual SST dies can have a cross-connection contact coupled to the interconnection. In one embodiment, the array can further include a cross-connection between the cross-connection contacts on the pair of the SST dies.
    Type: Grant
    Filed: August 17, 2019
    Date of Patent: November 23, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Martin F. Schubert
  • Patent number: 11088291
    Abstract: An anti-reflection coating has an average total reflectance of less than 10%, for example less than 5.9% such as from 4.9% to 5.9%, over a spectrum of wavelengths of 400-1100 nm and a range of angles of incidence of 0-90 degrees with respect to a surface normal of the anti-reflection coating. An anti-reflection coating has a total reflectance of less than 10%, for example less than 6% such as less than 4%, over an entire spectrum of wavelengths of 400-1600 nm and an entire range of angles of incidence of 0-70 degrees with respect to a surface normal of the anti-reflection coating.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 10, 2021
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Sameer Chhajed, Jong Kyu Kim, Shawn-Yu Lin, Mei-Ling Kuo, Frank W. Mont, David J. Poxson, E. Fred Schubert, Martin F. Schubert
  • Publication number: 20210151651
    Abstract: Vertical solid-state transducers (“SSTs”) having backside contacts are disclosed herein. An SST in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the SST, a second semiconductor material at a second side of the SST opposite the first side, and an active region between the first and second semiconductor materials. The SST can further include first and second contacts electrically coupled to the first and second semiconductor materials, respectively. A portion of the first contact can be covered by a dielectric material, and a portion can remain exposed through the dielectric material. A conductive carrier substrate can be disposed on the dielectric material. An isolating via can extend through the conductive carrier substrate to the dielectric material and surround the exposed portion of the first contact to define first and second terminals electrically accessible from the first side.
    Type: Application
    Filed: January 4, 2021
    Publication date: May 20, 2021
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20210143138
    Abstract: Solid state transducers with state detection, and associated systems and methods are disclosed. A solid state transducer system may include a support substrate that carries a solid state emitter and a state device. The solid state emitter and the state device may be stacked along a common axis. Further, the state device may be positioned to detect a state of the solid state emitter and/or an electrical path of which the solid state emitter forms a part. The solid state emitter may include a first semiconductor component, a second semiconductor component, and an active region between the first and second semiconductor components. The state device may include a state-sensing component having a composition different than that of the active region and the first and second semiconductor components. In some embodiments, the state-sensing component may include an electrostatic discharge protection device, a thermal sensor, a photosensor, or a combination thereof.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20210135043
    Abstract: Various embodiments of solid state transducer (“SST”) devices are disclosed. In several embodiments, a light emitter device includes a metal-oxide-semiconductor (MOS) capacitor, an active region operably coupled to the MOS capacitor, and a bulk semiconductor material operably coupled to the active region. The active region can include at least one quantum well configured to store first charge carriers under a first bias. The bulk semiconductor material is arranged to provide second charge carriers to the active region under the second bias such that the active region emits UV light.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20210135055
    Abstract: Various embodiments of light emitting dies and solid state lighting (“SSL”) devices with light emitting dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a light emitting die includes an SSL structure configured to emit light in response to an applied electrical voltage, a first electrode carried by the SSL structure, and a second electrode spaced apart from the first electrode of the SSL structure. The first and second electrode are configured to receive the applied electrical voltage. Both the first and second electrodes are accessible from the same side of the SSL structure via wirebonding.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov