Patents by Inventor Martin G. A. Guthrie

Martin G. A. Guthrie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8111040
    Abstract: In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile electronic device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to control operation of the mobile device and receive an enumeration acknowledgement signal from the USB host via the USB interface and generate an enable signal upon receiving the enumeration acknowledgement signal. The method and apparatus may further include a rechargeable battery, a battery charger, a timing circuit, and a battery charger enabling circuit.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: February 7, 2012
    Assignee: Research In Motion Limited
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Publication number: 20110260680
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Research In Motion Limited
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Patent number: 7999514
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: August 16, 2011
    Assignee: Research In Motion Limited
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Publication number: 20110133702
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 9, 2011
    Inventors: Dusan VESELIC, Martin G.A. Guthrie
  • Patent number: 7906940
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 15, 2011
    Assignee: Research In Motion Limited
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Publication number: 20100308777
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 9, 2010
    Inventors: Dusan VESELIC, Martin G.A. GUTHRIE
  • Patent number: 7847517
    Abstract: A system and method for using a universal serial bus (USB) interface in a mobile device is provided that includes providing a battery charger operable to receive a voltage provided at the USB interface, the battery charger operable for charging a battery in the mobile device, and, a voltage regulator operable to receive a voltage provided at the USB interface, the voltage regulator used in powering the mobile device. The method also includes, detecting a USB bus voltage at the USB interface, measuring passage of a predetermined amount of time upon detecting the USB bus voltage, and disabling at least one of the voltage regulator and the battery charger if the predetermined amount of time expires before an enumeration acknowledgement signal is received at the USB interface.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 7, 2010
    Assignee: Research In Motion Limited
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Patent number: 7847520
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 7, 2010
    Assignee: Research In Motion Limited
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Patent number: 7791319
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: September 7, 2010
    Assignee: Research In Motion Limited
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Publication number: 20100219797
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Application
    Filed: January 29, 2010
    Publication date: September 2, 2010
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Publication number: 20100117595
    Abstract: A system and method for using a universal serial bus (USB) interface in a mobile device is provided that includes providing a battery charger operable to receive a voltage provided at the USB interface, the battery charger operable for charging a battery in the mobile device, and, a voltage regulator operable to receive a voltage provided at the USB interface, the voltage regulator used in powering the mobile device. The method also includes, detecting a USB bus voltage at the USB interface, measuring passage of a predetermined amount of time upon detecting the USB bus voltage, and disabling at least one of the voltage regulator and the battery charger if the predetermined amount of time expires before an enumeration acknowledgement signal is received at the USB interface.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Publication number: 20100102774
    Abstract: In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile electronic device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to control operation of the mobile device and receive an enumeration acknowledgement signal from the USB host via the USB interface and generate an enable signal upon receiving the enumeration acknowledgement signal. The method and apparatus may further include a rechargeable battery, a battery charger, a timing circuit, and a battery charger enabling circuit.
    Type: Application
    Filed: December 30, 2009
    Publication date: April 29, 2010
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Patent number: 7679316
    Abstract: In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to execute programs and to control operation of the mobile device, the processing device may be further operable to receive an enumeration acknowledgement signal from the USB host via the USB interface. A rechargeable battery may be used for powering the processing device. A voltage regulator may be coupled to the USB interface and operable to receive a USB bus voltage from the USB interface and use the USB bus voltage to power the processing device. A timing circuitry may be used to disable the voltage regulator from powering the processing device after a pre-determined amount of time has expired, the timing circuitry being operable to measure the passage of the pre-determined amount of time upon detecting the USB bus voltage.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 16, 2010
    Assignee: Research In Motion Limited
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Patent number: 7663338
    Abstract: In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile electronic device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to execute programs and to control operation of the mobile device. The processing device may be operable to receive an enumeration acknowledgement signal from the USB host via the USB interface and generate an enable signal upon receiving the enumeration acknowledgement signal. A rechargeable battery may be used to power the processing device. A battery charger may be used to receive a USB bus voltage from the USB interface and use the USB bus voltage to power the processing device and to charge the rechargeable battery. The battery charger may be further operable to receive a charge enable signal that enables and disables the battery charger from powering the processing device and charging the rechargeable battery.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 16, 2010
    Assignee: Research In Motion Limited
    Inventors: Martin G. A. Guthrie, Dusan Veselic, Alexei Skarine, Michael F. Habicher
  • Publication number: 20040164708
    Abstract: A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 26, 2004
    Inventors: Dusan Veselic, Martin G. A. Guthrie
  • Patent number: 6426614
    Abstract: A boot-strapped current switch is provided that includes a biasing network, a control signal, a transistor, a control switch and a boot-strapping circuit. The biasing network generates a substantially constant voltage on a biasing network output. The transistor has a control terminal, a first current-carrying terminal, and a second current-carrying terminal, wherein the first current-carrying terminal generates the output current of the current mirror, and the second current-carrying terminal is coupled to a first potential. The control switch is coupled between the biasing network output and the control terminal of the transistor, and is also coupled to the control signal. The control switch couples the first biasing network output to the control terminal of the transistor when the control signal is in a first state. The boot-strapping circuit is coupled between the control terminal of the transistor and a second potential, and is also coupled to the control signal.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: July 30, 2002
    Assignee: Research In Motion Limited
    Inventor: Martin G. Guthrie
  • Publication number: 20020024329
    Abstract: A boot-strapped current switch is provided that includes a biasing network a control signal, a transistor, a control switch and a boot-strapping circuit. The biasing network generates a substantially constant voltage on a biasing network output. The transistor has a control terminal, a first current-carrying terminal, and a second current-carrying terminal, wherein the first current-carrying terminal generates the output current of the current mirror, and the second current-carrying terminal is coupled to a first potential. The control switch is coupled between the biasing network output and the control terminal of the transistor, and is also coupled to the control signal. The control switch couples the first biasing network output to the control terminal of the transistor when the control signal is in a first state. The boot-strapping circuit is coupled between the control terminal of the transistor and a second potential, and is also coupled to the control signal.
    Type: Application
    Filed: August 22, 2001
    Publication date: February 28, 2002
    Inventor: Martin G. Guthrie