Patents by Inventor Martin G. Albrecht

Martin G. Albrecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080303141
    Abstract: The present invention provides a method for etching a substrate, a method for forming an integrated circuit, an integrated circuit formed using the method, and an integrated circuit. The method for etching a substrate includes, among other steps, providing a substrate 140 having an aluminum oxide etch stop layer 130 located thereunder, and then etching an opening 150, 155, in the substrate 140 using an etchant comprising carbon oxide, a fluorocarbon, an etch rate modulator, and an inert carrier gas, wherein a flow rate of the carbon oxide is greater than about 80 sccm and the etchant is selective to the aluminum oxide etch stop layer 130. The aluminum oxide etch stop layer may also be used in the back-end of advanced CMOS processes as a via etch stop layer.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 11, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: K.R. Udayakumar, Ted S. Moise, Scott R. Summerfelt, Martin G. Albrecht, William W. Dostalik, JR., Francis G. Celii
  • Patent number: 7425512
    Abstract: The present invention provides a method for etching a substrate, a method for forming an integrated circuit, an integrated circuit formed using the method, and an integrated circuit. The method for etching a substrate includes, among other steps, providing a substrate 140 having an aluminum oxide etch stop layer 130 located thereunder, and then etching an opening 150, 155, in the substrate 140 using an etchant comprising carbon oxide, a fluorocarbon, an etch rate modulator, and an inert carrier gas, wherein a flow rate of the carbon oxide is greater than about 80 sccm and the etchant is selective to the aluminum oxide etch stop layer 130. The aluminum oxide etch stop layer may also be used in the back-end of advanced CMOS processes as a via etch stop layer.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 16, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Ted S. Moise, Scott R. Summerfelt, Martin G. Albrecht, William W. Dostalik, Jr., Francis G. Celii
  • Patent number: 7019352
    Abstract: Semiconductor devices and fabrication methods are disclosed, in which one or more low silicon-hydrogen SiN barriers are provided to inhibit hydrogen diffusion into ferroelectric capacitors and into transistor gate dielectric interface areas. The barriers may be used as etch stop layers in various levels of the semiconductor device structure above and/or below the level at which the ferroelectric capacitors are formed so as to reduce the hydrogen related degradation of the switched polarization properties of the ferroelectric capacitors and to reduce negative bias temperature instability in the device transistors.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: March 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: K. R. Udayakumar, Martin G. Albrecht, Theodore S. Moise, Scott R. Summerfelt, Sarah I. Hartwig
  • Patent number: 6984857
    Abstract: Semiconductor devices and fabrication methods are presented, in which a hydrogen barrier is provided above a ferroelectric capacitor to prevent degradation of the ferroelectric material during back-end manufacturing processes employing hydrogen. The hydrogen barrier comprises silicon rich silicon oxide or amorphous silicon, which can be used in combination with an aluminum oxide layer to inhibit diffusion of process-related hydrogen into the ferroelectric capacitor layer.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: January 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: K. R. Udayakumar, Martin G. Albrecht, Theodore S. Moise, IV, Scott R. Summerfelt, Sanjeev Aggarwal, Jeff L. Large