Patents by Inventor Martin H. Manley
Martin H. Manley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9601613Abstract: In one embodiment, a transistor includes a pillar of semiconductor material arranged in a racetrack-shaped layout having a substantially linear section that extends in a first lateral direction and rounded sections at each end of the substantially linear section. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. First and second gate members respectively disposed in the first and second dielectric regions are separated from the pillar by a gate oxide having a first thickness in the substantially linear section. The gate oxide being substantially thicker at the rounded sections. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: GrantFiled: July 5, 2012Date of Patent: March 21, 2017Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Martin H. Manley
-
Patent number: 9112017Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.Type: GrantFiled: August 15, 2013Date of Patent: August 18, 2015Assignee: Power Integrations, Inc.Inventors: Sujit Banerjee, Martin H. Manley
-
Patent number: 8816433Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.Type: GrantFiled: March 28, 2013Date of Patent: August 26, 2014Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Patent number: 8653583Abstract: In one embodiment, a semiconductor device includes a main vertical field-effect transistor (FET) and a sensing FET. The main vertical FET and the sense FET are both formed on a pillar of semiconductor material. Both share an extended drain region formed in the pillar above the substrate, and first and second gate members formed in a dielectric on opposite sides of the pillar. The source regions of the main vertical FET and the sensing FET are separated and electrically isolated in a first lateral direction. In operation, the sensing FET samples a small portion of a current that flows in the main vertical FET. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: GrantFiled: February 16, 2007Date of Patent: February 18, 2014Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Publication number: 20130328114Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.Type: ApplicationFiled: August 15, 2013Publication date: December 12, 2013Applicant: Power Integrations, Inc.Inventors: Sujit Banerjee, Martin H. Manley
-
Publication number: 20130234243Abstract: In one embodiment, a transistor fabricated on a semiconductor die is arranged into sections of elongated transistor segments. The sections are arranged in rows and columns substantially across the semiconductor die. Adjacent sections in a row or a column are oriented such that the length of the transistor segments in a first one of the adjacent sections extends in a first direction, and the length of the transistor segments in a second one of the adjacent sections extends in a second direction, the first direction being substantially orthogonal to the second direction. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: ApplicationFiled: March 28, 2013Publication date: September 12, 2013Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Patent number: 8513719Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.Type: GrantFiled: April 23, 2012Date of Patent: August 20, 2013Assignee: Power Integrations, Inc.Inventors: Sujit Banerjee, Martin H. Manley
-
Patent number: 8410551Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.Type: GrantFiled: September 9, 2011Date of Patent: April 2, 2013Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Publication number: 20120280314Abstract: In one embodiment, a transistor includes a pillar of semiconductor material arranged in a racetrack-shaped layout having a substantially linear section that extends in a first lateral direction and rounded sections at each end of the substantially linear section. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. First and second gate members respectively disposed in the first and second dielectric regions are separated from the pillar by a gate oxide having a first thickness in the substantially linear section. The gate oxide being substantially thicker at the rounded sections. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: ApplicationFiled: July 5, 2012Publication date: November 8, 2012Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Martin H. Manley
-
Publication number: 20120199885Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.Type: ApplicationFiled: April 23, 2012Publication date: August 9, 2012Applicant: POWER INTEGRATIONS, INC.Inventors: Sujit Banerjee, Martin H. Manley
-
Patent number: 8222691Abstract: In one embodiment, a transistor includes a pillar of semiconductor material arranged in a racetrack-shaped layout having a substantially linear section that extends in a first lateral direction and rounded sections at each end of the substantially linear section. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. First and second gate members respectively disposed in the first and second dielectric regions are separated from the pillar by a gate oxide having a first thickness in the substantially linear section. The gate oxide being substantially thicker at the rounded sections. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: GrantFiled: August 25, 2009Date of Patent: July 17, 2012Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Martin H. Manley
-
Patent number: 8164125Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.Type: GrantFiled: May 7, 2010Date of Patent: April 24, 2012Assignee: Power Integrations, Inc.Inventors: Sujit Banerjee, Martin H. Manley
-
Publication number: 20120061755Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.Type: ApplicationFiled: September 9, 2011Publication date: March 15, 2012Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Publication number: 20110272758Abstract: A semiconductor device comprises an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which comprises the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET. This abstract is provided to allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: ApplicationFiled: May 7, 2010Publication date: November 10, 2011Applicant: Power Integrations, Inc.Inventors: Sujit Banerjee, Martin H. Manley
-
Patent number: 8022456Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.Type: GrantFiled: November 1, 2010Date of Patent: September 20, 2011Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Publication number: 20110089476Abstract: In one embodiment, a transistor fabricated on a semiconductor die includes a first section of transistor segments disposed in a first area of the semiconductor die, and a second section of transistor segments disposed in a second area of the semiconductor die adjacent the first area. Each of the transistor segments in the first and second sections includes a pillar of a semiconductor material that extends in a vertical direction. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. Outer field plates of transistor segments adjoining first and second sections are either separated or partially merged.Type: ApplicationFiled: November 1, 2010Publication date: April 21, 2011Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Patent number: 7859037Abstract: In one embodiment, a transistor fabricated on a semiconductor die is arranged into sections of elongated transistor segments. The sections are arranged in rows and columns substantially across the semiconductor die. Adjacent sections in a row or a column are oriented such that the length of the transistor segments in a first one of the adjacent sections extends in a first direction, and the length of the transistor segments in a second one of the adjacent sections extends in a second direction, the first direction being substantially orthogonal to the second direction. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: GrantFiled: February 16, 2007Date of Patent: December 28, 2010Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley
-
Publication number: 20090315105Abstract: In one embodiment, a transistor includes a pillar of semiconductor material arranged in a racetrack-shaped layout having a substantially linear section that extends in a first lateral direction and rounded sections at each end of the substantially linear section. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. First and second gate members respectively disposed in the first and second dielectric regions are separated from the pillar by a gate oxide having a first thickness in the substantially linear section. The gate oxide being substantially thicker at the rounded sections. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: ApplicationFiled: August 25, 2009Publication date: December 24, 2009Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Martin H. Manley
-
Patent number: 7595523Abstract: In one embodiment, a transistor includes a pillar of semiconductor material arranged in a racetrack-shaped layout having a substantially linear section that extends in a first lateral direction and rounded sections at each end of the substantially linear section. First and second dielectric regions are disposed on opposite sides of the pillar. First and second field plates are respectively disposed in the first and second dielectric regions. First and second gate members respectively disposed in the first and second dielectric regions are separated from the pillar by a gate oxide having a first thickness in the substantially linear section. The gate oxide being substantially thicker at the rounded sections. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: GrantFiled: February 16, 2007Date of Patent: September 29, 2009Assignee: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Martin H. Manley
-
Publication number: 20080197406Abstract: In one embodiment, a semiconductor device includes a main vertical field-effect transistor (FET) and a sensing FET. The main vertical FET and the sense FET are both formed on a pillar of semiconductor material. Both share an extended drain region formed in the pillar above the substrate, and first and second gate members formed in a dielectric on opposite sides of the pillar. The source regions of the main vertical FET and the sensing FET are separated and electrically isolated in a first lateral direction. In operation, the sensing FET samples a small portion of a current that flows in the main vertical FET. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.Type: ApplicationFiled: February 16, 2007Publication date: August 21, 2008Applicant: Power Integrations, Inc.Inventors: Vijay Parthasarathy, Sujit Banerjee, Martin H. Manley