Patents by Inventor Martin Harder

Martin Harder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050203381
    Abstract: In a method and a magnetic resonance system for determining the position and/or orientation of the image plane of slice image exposures of a vessel region in a contrast agent bolus examination, in particular in the region of the aorta bifurcation or the aorta arch, wherein the image plane traverses the vessel region in the longitudinal section, initially a group of slice image exposures disposed essentially orthogonal to the vessel is automatically acquired from different planes of the vessel region lying parallel to one another, and the image regions showing the vessel region are automatically determined within the orthogonal slice image exposures in an image-processing device, and using the determined image regions the spatial position of the vessel region is determined.
    Type: Application
    Filed: January 21, 2005
    Publication date: September 15, 2005
    Inventor: Martin Harder
  • Publication number: 20050088177
    Abstract: In a method and computer program product for operating a tomographic imaging apparatus, a standard measurement protocol is generated by displaying a planning representation of a standard object, defining a spatial position of a standard imaging area in the planning representation, and storing, as the standard measurement protocol for the standard object, a reference to the standard object and parameters of the standard imaging area. Such a standard measurement protocol can then be used in the slice position planning for an actual tomographic measurement, by obtaining data representing features of an examination object, corresponding to the standard object, determining a geometrical relation of the features of the examination object to features of the standard object, and generating an object-specific measurement protocol wherein the imaging area is positioned relative to the examination object by modification of the standard measurement protocol.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 28, 2005
    Inventors: Oliver Schreck, Mike Muller, Martin Harder, Hans-Peter Hollenbach, Franz Schmitt, Ines Nimsky, Anders Dale, Andre Van Der Kouwe
  • Patent number: 6792066
    Abstract: In a method for controlling a tomogram acquisition device acquiring tomograms of a subject and a control device and tomography apparatus operating according to the method, reference images of the subject are presented at a graphic user interface, and the positions of tomograms to be subsequently acquired are defined by slice position markings within the displayed reference images. A sequence of time-dependent slice position markings is first set in the reference images, with a time mark being allocated to the individual slice position marking of the sequence. On the basis of this sequence of time-dependent slice position markings, the positions of the tomograms to be subsequently acquired are determined dependent on the acquisition time of each tomogram relative to a reference time.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: September 14, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Harder, Niels Oesingmann
  • Patent number: 6689059
    Abstract: An apparatus for the implementation of a physiologically controlled measurement at a living subject has a signal acquisition arrangement for acquiring a physiological signal of the subject, a display for the graphic display of a time curve of the physiological signal, and a time-setting arrangement for setting at least one relative point in time that is referenced to the time curve of the physiological signal and that is to be employed for the control of the time sequence of the measurement. The display is configured for also graphically displaying the at least one relative point in time in its temporal relationship to the physiological signal, particularly by mixing at least one time bar in the displayed image. Quick visual monitoring of the relative points in time that are set is thus possible.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: February 10, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Harder, Gerhard Seng
  • Publication number: 20020103422
    Abstract: An apparatus for the implementation of a physiologically controlled measurement at a living subject has a signal acquisition arrangement for acquiring a physiological signal of the subject, a display for the graphic display of a time curve of the physiological signal, and a time-setting arrangement for setting at least one relative point in time that is referenced to the time curve of the physiological signal and that is to be employed for the control of the time sequence of the measurement. The display is configured for also graphically displaying the at least one relative point in time in its temporal relationship to the physiological signal, particularly by mixing at least one time bar in the displayed image. Quick visual monitoring of the relative points in time that are set is thus possible.
    Type: Application
    Filed: January 29, 2002
    Publication date: August 1, 2002
    Inventors: Martin Harder, Gerhard Seng
  • Publication number: 20020071599
    Abstract: In an apparatus for displaying reference images of patients and slices to be measured in a displayed reference image for assisting the positioning of slices in preparation for a slice-by-slice measurement and a computer software product and corresponding method, a storage device stores at least one measured reference image of a current patient, a display screen displays a stored reference image, an input device allows entry of commands for displaying and positioning slices to be measured in a displayed reference image, and a processing device processes the entered commands and correspondingly controls the display of the reference image and the slices. The processing device, depending on the entry of commands via the input device by a user, generates a rotated representation of the reference image and a spatial representation—corresponding to the rotation of the reference image—of the slices and displays them on the screen.
    Type: Application
    Filed: October 1, 2001
    Publication date: June 13, 2002
    Inventors: Martin Herget, Martin Harder