Patents by Inventor Martin Hempstead
Martin Hempstead has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250080225Abstract: Fiber optic networks, optical network units, and methods of configuring a fiber optic network and an optical network unit using a variable ratio coupler are disclosed. In one embodiment, a fiber optic network includes a feeder optical cable. The first optical network unit and the second optical network unit each includes a variable ratio coupler operable to selectively set a split-ratio among a plurality of split-ratios, and a fiber optic transceiver module. The fiber optic network further includes a first drop cable optically coupling the first optical network unit to the feeder optical cable at a first position, and a second drop cable optically coupling the second optical network unit to the feeder optical cable at a second position. A first split-ratio of the first optical network unit is based on the first position and a second split-ratio of the second optical network unit is based on the second position.Type: ApplicationFiled: November 19, 2024Publication date: March 6, 2025Inventors: Kevin Lee Bourg, Martin Hempstead, Joseph Clinton Jensen, Claudio Mazzali, Raman Kumar Selli
-
Publication number: 20240427106Abstract: Disclosed herein are fiber optic cable accumulators including a base and a perimeter wall extending from the base. The perimeter wall defines a cavity and a plurality of openings providing ingress and egress pathways into the cavity. At least one mandrel extends from the base within the cavity and is disposed equidistant from at least two opposite portions of the perimeter wall.Type: ApplicationFiled: June 20, 2024Publication date: December 26, 2024Inventors: Scott Robertson Bickham, Martin Hempstead, Garth Weber Scannell
-
Patent number: 12176953Abstract: Fiber optic networks, optical network units, and methods of configuring a fiber optic network and an optical network unit using a variable ratio coupler are disclosed. In one embodiment, a fiber optic network includes a feeder optical cable. The first optical network unit and the second optical network unit each includes a variable ratio coupler operable to selectively set a split-ratio among a plurality of split-ratios, and a fiber optic transceiver module. The fiber optic network further includes a first drop cable optically coupling the first optical network unit to the feeder optical cable at a first position, and a second drop cable optically coupling the second optical network unit to the feeder optical cable at a second position. A first split-ratio of the first optical network unit is based on the first position and a second split-ratio of the second optical network unit is based on the second position.Type: GrantFiled: October 26, 2022Date of Patent: December 24, 2024Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: Kevin Lee Bourg, Martin Hempstead, Joseph Clinton Jensen, Claudio Mazzali, Raman Kumar Selli
-
Publication number: 20240264400Abstract: A fiber optic cable manager is provided configured to receive at least one optical fiber optically connecting one or more fiber optic adapters to a fiber optic device. The fiber optic cable manager includes a base, a sidewall extending from the base and defining a cable input opening and a cable output opening, at least one cable optically connecting one or more fiber optic adapters to an opto-electronic device, and a plurality of mandrels extending from the base and interior to the sidewall, the plurality of mandrels and the sidewall are configured to limit bending of the at least one optical to greater than a predetermined bend radius.Type: ApplicationFiled: April 17, 2024Publication date: August 8, 2024Inventors: Lars Martin Otfried Brusberg, David Wesley Chiasson, Riley Saunders Freeland, Martin Hempstead, Ulrich Wilhelm Heinz Neukirch, David Evan Robinson
-
Publication number: 20240255694Abstract: An optical fiber having a silica-based core region with an outer radius r1 from about 4.0 microns to about 4.6 microns and a core volume from about 4.5% ?-micron2 to about 5.5% ?-micron2. The optical fiber further includes a depressed-index cladding region and an outer cladding region. The depressed-index cladding region having an inner radius r2 such that r1/r2 is greater than about 0.4 and less than about 0.6 and a trench volume between about ?50% ?-micron2s and about ?20% ?-micron2. The optical fiber has a mode field diameter at 1310 nm from about 8.8 microns to about 9.4 microns, a 2 m cable cutoff from about 1120 nm to about 1260 nm, a bending loss at 1310 nm, as determined by the mandrel wrap test using a 15 mm diameter mandrel, of less than 1.0 dB/turn, and a zero dispersion wavelength between 1300 nm and 1324 nm.Type: ApplicationFiled: January 12, 2024Publication date: August 1, 2024Inventors: Scott Robertson Bickham, Martin Hempstead, Snigdharaj Kumar Mishra, Stephen Quenton Smith, Pushkar Tandon
-
Patent number: 11947167Abstract: Fiber optic terminals, tools and methods for adjusting a split ratio of a fiber optic terminal are disclosed. In one embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes an axle for insertion into a port of the fiber optic terminal, and a terminal engagement body disposed about the axle. The terminal engagement body includes a terminal engagement feature for engaging an alignment feature within the fiber optic terminal, wherein the axle is free to rotate with respect to the terminal engagement body, and a set-point indicator. The tool further includes an end piece coupled to the axle, and a plurality of set-point markers, wherein rotation of the end piece causes rotation of the axle and an alignment between one set-point marker of the plurality of set-point markers with the set-point indicator indicates the split ratio of the fiber optic terminal.Type: GrantFiled: May 20, 2022Date of Patent: April 2, 2024Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATIONInventors: Jody Todd Bliss, Douglas Llewellyn Butler, Agnivo Gosai, Martin Hempstead, Blake Paul Lee, William James Miller, Pinhas Yehuda Rosenfelder, Peter Gerard Wigley
-
Publication number: 20230361878Abstract: Network access devices and methods for increasing availability in an optical network. The network access device includes a first common port configured to receive a primary optical beam, a second common port configured to receive a secondary optical beam, a wavelength division multiplexing device, and an optical coupling device. When operating in a normal state, the optical coupling device provides at least a portion of the primary optical beam to the wavelength division multiplexing device. In response to a problem being detected in the primary distribution cable, the optical coupling device provides at least a portion of the secondary optical beam to the wavelength division multiplexing device. Problems in the primary distribution cable may be detected by a sensing device in the network access device based on a loss of signal at the first common port.Type: ApplicationFiled: May 1, 2023Publication date: November 9, 2023Inventors: Martin Hempstead, Andreas Matiss, Martin Spreemann, Eric Stephan ten Have, Peter Gerard Wigley
-
Patent number: 11773016Abstract: An apparatus for curing a coating composition disposed on a glass fiber includes a diffuse reflector surrounding a coating composition disposed on a glass fiber. The diffuse reflector defines a cavity having a sidewall extending from a first end to a second end. The first end has a first opening and the second end has a second opening. The glass fiber passes through the cavity from the first opening to the second opening. The sidewall has an interior surface facing the coating composition disposed on the glass fiber. The interior surface includes a scattering material. A light source integrated with the diffuse reflector. The light source directs light to the scattering material. The scattering material diffusely reflects at least 90% of the light. The diffusely reflected light has sufficient intensity to cure the coating composition.Type: GrantFiled: November 19, 2019Date of Patent: October 3, 2023Assignee: Corning IncorporatedInventors: Martin Hempstead, Stephan Lvovich Logunov
-
Publication number: 20230136577Abstract: Fiber optic networks, optical network units, and methods of configuring a fiber optic network and an optical network unit using a variable ratio coupler are disclosed. In one embodiment, a fiber optic network includes a feeder optical cable. The first optical network unit and the second optical network unit each includes a variable ratio coupler operable to selectively set a split-ratio among a plurality of split-ratios, and a fiber optic transceiver module. The fiber optic network further includes a first drop cable optically coupling the first optical network unit to the feeder optical cable at a first position, and a second drop cable optically coupling the second optical network unit to the feeder optical cable at a second position. A first split-ratio of the first optical network unit is based on the first position and a second split-ratio of the second optical network unit is based on the second position.Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Inventors: Kevin Lee Bourg, Martin Hempstead, Joseph Clinton Jensen, Claudio Mazzali, Raman Kumar Selli
-
Publication number: 20220381989Abstract: Fiber optic terminals, tools and methods for adjusting a split ratio of a fiber optic terminal are disclosed. In one embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes an axle for insertion into a port of the fiber optic terminal, and a terminal engagement body disposed about the axle. The terminal engagement body includes a terminal engagement feature for engaging an alignment feature within the fiber optic terminal, wherein the axle is free to rotate with respect to the terminal engagement body, and a set-point indicator. The tool further includes an end piece coupled to the axle, and a plurality of set-point markers, wherein rotation of the end piece causes rotation of the axle and an alignment between one set-point marker of the plurality of set-point markers with the set-point indicator indicates the split ratio of the fiber optic terminal.Type: ApplicationFiled: May 20, 2022Publication date: December 1, 2022Inventors: Jody Todd Bliss, Douglas Llewellyn Butler, Agnivo Gosai, Martin Hempstead, Blake Paul Lee, William James Miller, Pinhas Yehuda Rosenfelder, Peter Gerard Wigley
-
Patent number: 11428637Abstract: A Raman spectroscopy system is provided. The spectroscopy system includes an optical switch including a pump inlet, a return outlet, a plurality of pump outlets, and a plurality of return inlets. The spectroscopy system includes a plurality of radiation sources optically coupled to the pump inlet of the optical switch, and a detector optically coupled to the return outlet of the optical switch. The spectroscopy system further includes a plurality of probes, each probe optically connected to at least one of the plurality of pump outlets of the optical switch by at least one excitation fiber and optically coupled to one of the return inlets of the optical switch by at least one emission fiber.Type: GrantFiled: September 29, 2020Date of Patent: August 30, 2022Assignee: CORNING INCORPORATEDInventors: Scott Robertson Bickham, Martin Hempstead, Richard Lynton Wiggins
-
Publication number: 20210102898Abstract: A Raman spectroscopy system is provided. The spectroscopy system includes an optical switch including a pump inlet, a return outlet, a plurality of pump outlets, and a plurality of return inlets. The spectroscopy system includes a plurality of radiation sources optically coupled to the pump inlet of the optical switch, and a detector optically coupled to the return outlet of the optical switch. The spectroscopy system further includes a plurality of probes, each probe optically connected to at least one of the plurality of pump outlets of the optical switch by at least one excitation fiber and optically coupled to one of the return inlets of the optical switch by at least one emission fiber.Type: ApplicationFiled: September 29, 2020Publication date: April 8, 2021Inventors: Scott Robertson Bickham, Martin Hempstead, Richard Lynton Wiggins
-
Publication number: 20210080658Abstract: A fiber optic dust cap is provided for a fiber optic connector having a connector housing and a ferrule extending therefrom and terminating at a ferrule end face. The fiber optic dust cap includes a hollow body including a front end, a rear end, and, a bore extending therebetween. At least a first portion of the bore extends along a longitudinal axis and is configured to receive the connector housing, and at least a second portion of the bore is configured to be radially spaced apart from the ferrule. The fiber optic dust cap also includes a transparent window positioned over the bore and configured to be longitudinally spaced apart from the ferrule when the connector housing is received by at least the first portion of the bore. A method of inspecting a ferrule end face through the dust cap is also disclosed.Type: ApplicationFiled: September 12, 2019Publication date: March 18, 2021Inventors: Martin Hempstead, Wolf Peter Kluwe, Eric Stephan ten Have
-
Patent number: 10893577Abstract: An improved process for preheating and doping a preform having a consolidated glass core and a silica soot cladding surrounding core involves waveguiding millimeter wavelength electromagnetic radiation into the preform to cause heating of the preform within the interior via absorption of the electromagnetic radiation by silica in the preform while the preform is exposed to a gas phase dopant.Type: GrantFiled: September 11, 2017Date of Patent: January 12, 2021Assignee: Corning IncorporatedInventor: Martin Hempstead
-
Publication number: 20190384019Abstract: Optical connections and optical receptacle bodies are disclosed. In one embodiment, an optical connection includes an optical chip, a receptacle body and first and second alignment pins. The optical chip includes a surface, an edge extending from the surface, and at least one optical waveguide within the optical chip and terminating at the edge. The receptacle body includes a first surface, a second surface, a first groove at the second surface, a second groove at the second surface, and a through-hole extending from the first surface to the second surface, wherein the through-hole is disposed between the first groove and the second groove. The first alignment pin is disposed on the surface of the optical chip and within the first groove of the receptacle body. The second alignment pin is disposed on the surface of the optical chip and within the second groove of the receptacle body.Type: ApplicationFiled: August 29, 2019Publication date: December 19, 2019Inventors: Christian Fiebig, Martin Hempstead, Ulrich Wilhelm Heinz Neukirch, Gary Richard Trott
-
Publication number: 20180084609Abstract: An improved process for preheating and doping a preform having a consolidated glass core and a silica soot cladding surrounding core involves waveguiding millimeter wavelength electromagnetic radiation into the preform to cause heating of the preform within the interior via absorption of the electromagnetic radiation by silica in the preform while the preform is exposed to a gas phase dopant.Type: ApplicationFiled: September 11, 2017Publication date: March 22, 2018Inventor: Martin Hempstead
-
Patent number: 8259385Abstract: A method for operating a wavelength-converted light source includes directing a pump beam having a fundamental wavelength from the laser source into an input facet of the wavelength conversion device such that a wavelength-converted output beam is emitted from an output facet of the wavelength conversion device in the field of view of an optical detector. A physical property of the wavelength conversion device is varied within individual ones of a succession of consecutive speckle reduction intervals having durations less than the integration time of the optical detector. The physical property of the wavelength conversion device is varied by an amount that is sufficient to change in a phase-matched (PM) wavelength of the wavelength conversion device. The fundamental wavelength of the pump beam is thereafter adjusted based on the change in the PM wavelength to maintain an efficiency of the wavelength conversion in the wavelength conversion device.Type: GrantFiled: October 22, 2009Date of Patent: September 4, 2012Assignee: Corning IncorporatedInventors: Martin Hempstead, Rostislav Vatchev Roussev, David Lee Weidman
-
Patent number: 8009279Abstract: Methods of characterizing non-linear optical materials and fabricating wavelength conversion devices are provided. The method of characterizing non-linear optical materials comprising a periodically poled waveguide layer and at least one waveguide region includes coupling at least one diagnostic laser beam into the waveguide region at one or more input locations positioned on the waveguide layer of the non-linear optical material, and out-coupling the diagnostic laser beam from the waveguide region by applying an electric field to the periodically poled domains at one or more output locations positioned on the waveguide layer. The method also includes measuring an intensity level of the out-coupled beam and determining at least one optical property of the waveguide region based at least in part on the measured intensity level of the out-coupled beam. The characterization method may be implemented into a wavelength conversion fabrication process.Type: GrantFiled: January 12, 2009Date of Patent: August 30, 2011Assignee: Corning IncorporatedInventor: Martin Hempstead
-
Patent number: 7970028Abstract: A method of operating a laser source comprising is provided. The method reduces speckle contrast in a projected image by creating a plurality of statistically independent speckle patterns. The method comprises generating a plurality of sub-beams that define an optical mode. The method further comprises controlling the phase of selected sub-beams to continuously sequence the laser source through a plurality of orthogonal optical modes. The plurality of orthogonal modes create a corresponding number of statistically independent speckle patterns, thus reducing speckle contrast in a image projected using the laser source by time averaging.Type: GrantFiled: August 29, 2008Date of Patent: June 28, 2011Assignee: Corning IncorporatedInventors: Dmitri Vladislavovich Kuksenkov, Martin Hempstead
-
Publication number: 20110096390Abstract: A method for operating a wavelength-converted light source includes directing a pump beam having a fundamental wavelength from the laser source into an input facet of the wavelength conversion device such that a wavelength-converted output beam is emitted from an output facet of the wavelength conversion device in the field of view of an optical detector. A physical property of the wavelength conversion device is varied within individual ones of a succession of consecutive speckle reduction intervals having durations less than the integration time of the optical detector. The physical property of the wavelength conversion device is varied by an amount that is sufficient to change in a phase-matched (PM) wavelength of the wavelength conversion device. The fundamental wavelength of the pump beam is thereafter adjusted based on the change in the PM wavelength to maintain an efficiency of the wavelength conversion in the wavelength conversion device.Type: ApplicationFiled: October 22, 2009Publication date: April 28, 2011Inventors: Martin Hempstead, Rostislav Vatchev Roussev, David Lee Weidman