Patents by Inventor Martin J. Murtagh

Martin J. Murtagh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8163349
    Abstract: A method for treating a microcracked, ceramic substrate is provided that obviates the need for filling the microcracks of the substrate via a passivation step prior to sintering a layer of washcoat to the surfaces of the substrate that may either contain a catalyst, or provide a support layer for a catalyst subsequently applied. In the first step of the method, a slurry of particles of a washcoating composition is applied over the surface of the substrate such that particles of the composition are lodged into microcracks of the substrate. Next, the substrate is heat treated to between about 700° C. and 1300° C. The method is particularly applicable to ceramic honeycomb structures used as catalytic converters in automotive exhaust systems.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: April 24, 2012
    Assignee: Corning Incorporated
    Inventors: Thomas J. Glasson, Martin J. Murtagh, Donna R. Seyler
  • Publication number: 20090142541
    Abstract: A method for treating a microcracked, ceramic substrate is provided that obviates the need for filling the microcracks of the substrate via a passivation step prior to sintering a layer of washcoat to the surfaces of the substrate that may either contain a catalyst, or provide a support layer for a catalyst subsequently applied. In the first step of the method, a slurry of particles of a washcoating composition is applied over the surface of the substrate such that particles of the composition are lodged into microcracks of the substrate. Next, the substrate is heat treated to between about 700° C. and 1300° C. The applicants have discovered that such heat treating not only sets the washcoating particles into the substrate, but also causes the microcracks in the substrate to permanently enlarge as a result of the resistance of the lodged particles of washcoating composition against the walls of the microcracks as they attempt to close as a result of thermal expansion of the substrate.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventors: Thomas J. Glasson, Martin J. Murtagh, Donna R. Seyler
  • Patent number: 7141089
    Abstract: A ceramic filter for trapping and combusting diesel exhaust particulates composed of an end-plugged cordierite honeycomb structure exhibiting a pore size distribution as determined by mercury porosimetry in which the quantity d50/(d50+d90) as related to pore size distribution is less than 0.70, a soot loaded permeability factor Sf, as defined by the equation [d50/(d50+d90)]/[% porosity/100], of less than 1.55, and, a coefficient of thermal expansion (25–800° C.) of no greater than 17×10?7/° C. The ceramic filter further exhibits a median pore diameter, d50, of at least 4 micrometers and up to 40 micrometers. A method of making the filter is provided.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: November 28, 2006
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Gregory A. Merkel, Martin J. Murtagh
  • Publication number: 20040029707
    Abstract: A ceramic filter for trapping and combusting diesel exhaust particulates composed of an end-plugged cordierite honeycomb structure exhibiting a pore size distribution as determined by mercury porosimetry in which the quantity d50/(d50+d90) as related to pore size distribution is less than 0.70, a soot loaded permeability factor Sf, as defined by the equation [d50/(d50+d90)]/[% porosity/100], of less than 1.55, and, a coefficient of thermal expansion (25-800° C.) of no greater than 17×10−7/° C. The ceramic filter further exhibits a median pore diameter, d50, of at least 4 micrometers and up to 40 micrometers. A method of making the filter is provided.
    Type: Application
    Filed: June 26, 2003
    Publication date: February 12, 2004
    Inventors: Douglas M. Beall, Gregory A. Merkel, Martin J. Murtagh
  • Patent number: 6319870
    Abstract: The present invention is directed at sintered ceramic articles exhibiting a crystalline phase assemblage comprising, by weight, of 65-95% cordierite and 5-35% of a secondary phase selected from the group consisting of mullite, magnesium-aluminate spinel, and sapphirine and having a bulk analytical composition consisting essentially of about, by weight, 32-51% SiO2, 35-49% Al2O3, 7-16% MgO. Furthermore, the ceramic articles exhibit an effective strength of greater than about 3000, a CTE of less than about 15×10−7/° C., over the temperature range of 25° C., to 1000° C., and a total intrusion porosity, as measured by a Hg intrusion method, of at least 20%. This invention also relates to a method for producing a sintered ceramic article having the aforementioned cordierite and secondary minor phase mixture.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: November 20, 2001
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Martin J. Murtagh
  • Patent number: 5409870
    Abstract: Cordierite-containing articles are produced by a method comprising the steps of providing raw materials including including alumina-yielding ingredients, magnesia-yielding ingredients, and silica-yielding ingredients, suitable to form an analytical batch composition by weight on an oxide basis of 9-20 weight percent MgO, 30-50 weight percent Al.sub.2 O.sub.3, and 41-56.5 weight percent SiO.sub.2. The raw materials include talc having a BET surface area of no greater than about 4.0 m.sup.2 /g, and uncalcined clay having an average particle size of no greater than about 2.0 .mu.m. The raw materials are blended with an effective amount of vehicle and forming aids to form a plastic mixture. The plastic mixture is anisostatically formed into a green body and dried. The dried green body is fired at a temperature and for a time effective to form a cordierite/containing ceramic article. The cordierite-containing articles exhibit a coefficient of thermal expansion of not greater than about 4.0.times.10.sup.-7 /.
    Type: Grant
    Filed: November 20, 1992
    Date of Patent: April 25, 1995
    Assignee: Corning Incorporated
    Inventors: Robert J. Locker, Martin J. Murtagh
  • Patent number: 5258150
    Abstract: A body is made up of at least about 93% by weight cordierite, having a coefficient of thermal expansion of no greater than about 4.times.10.sup.-7 .degree.C.sup.-1, from about 25.degree. C. to about 800.degree.0 C., and a total porosity of greater than about 42%. A method for producing the body which includes selecting raw materials to form a composition which forms cordierite on firing, the raw materials being composed of: talc having a BET surface area of no greater than about 5 m.sup.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: November 2, 1993
    Assignee: Corning Incorporated
    Inventors: Gregory A. Merkel, Martin J. Murtagh
  • Patent number: 5141686
    Abstract: A method of preparing a precursor or cordierite-forming particulate raw material mixture is improved upon by characterizing the talc particles utilized in the raw material mixture in accordance with a Morphology X-ray Diffraction Index or the surface area of the talc particles. Talc particles having a predetermined or desired Morphology X-ray Diffraction Index or surface area are utilized in preparing the raw material mixture. A cordierite article is produced having pores therethrough, which pores have shapes that are "blocky" or "platy" as a result of the talc morphology. "Platy" pores in the fired cordierite article result in higher Water Absorption values and an increase in coatability by high surface area washcoat and catalyst; conversely, "blocky" pores result in lower Water Absorption values and a decrease in coatability by high surface area washcoat and catalyst.
    Type: Grant
    Filed: November 21, 1988
    Date of Patent: August 25, 1992
    Assignee: Corning Incorporated
    Inventor: Martin J. Murtagh
  • Patent number: 5114643
    Abstract: A body is disclosed which is at least about 90% by weight cordierite, and has a coefficient of thermal expansion of less than about 16.times.10.sup.-7 /.degree.C. from about 25.degree. C. to about 1000.degree. C. Also disclosed is a method of fabricating the body. Raw materials are selected to form a nominal composition consisting essentially of in percent by weight about 11.5 to about 16.5 MgO, about 33.0 to about 41.0 Al.sub.2 O.sub.3, and about 46.5 to about 53 SiO.sub.2. The raw materials can be a combination of silica and magnesium aluminate spinel, a combination of silica, magnesium aluminate spinel, and a MgO yielding component, or a combination of silica, magnesium aluminate spinel, and a Al.sub.2 O.sub.3 yielding components. The raw materials are provided absent of clay and talc. The raw materials are blended with an effective amount of vehicle and forming aids to impart plastic formability and green strength thereto form a plastic mixture.
    Type: Grant
    Filed: February 13, 1991
    Date of Patent: May 19, 1992
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Evelyn M. DeLiso, Martin J. Murtagh
  • Patent number: 5114644
    Abstract: A body is disclosed which is at least about 90% by weight cordierite, has a mean pore size of less than about 10.0 microns, and a coefficient of thermal expansion of no greater than about 9.0.times.10.sup.-7 /.degree.C. from about 25.degree. C. to 1000.degree. C. Also disclosed is a method of fabricating the body. Raw materials are selected to form a composition consisting essentially of in percent by weight about 12 to 16 magnesium oxide, about 35 to 41 aluminum oxide, and about 43 to 53 silica. The raw materials are absent of clay and talc. The magnesium oxide is supplied by a magnesium oxide component having an average particle size of no greater than about 15.0 micrometers in diameter. The aluminum oxide is supplied by an aluminum oxide component having an average particle size of no greater than about 8.0 micrometers in diameter. The composition is capable of forming cordierite in the subsequent firing step.
    Type: Grant
    Filed: February 13, 1991
    Date of Patent: May 19, 1992
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Evelyn M. DeLiso, Donald L. Guile, Martin J. Murtagh
  • Patent number: 4950628
    Abstract: The present invention is directed toward the improvement of the properties of cordierite sintered structures. The improvement consists essentially of heat treating the calcined kaolin component which when added to the batch of ray materials increases the thermal shock resistance and decreases the coefficient of thermal expansion.
    Type: Grant
    Filed: April 19, 1989
    Date of Patent: August 21, 1990
    Assignee: Corning Incorporated
    Inventors: Thomas E. Landon, Martin J. Murtagh, Mark A. Spetseris