Patents by Inventor Martin J. Seamons

Martin J. Seamons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220037147
    Abstract: Provided are methods of depositing a film in high aspect ratio (AR) structures with small dimensions. The method provides flowable deposition for seamless gap-fill, film densification by low temperature inductively coupled plasma (ICP) treatment (<600° C.), optional film curing, and etch back to form a low-k dielectric film having a dielectric constant, k-value less than 3.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Myungsun Kim, Jingmei Liang, Martin J. Seamons, Michael Stolfi, Benjamin Colombeau
  • Patent number: 10373822
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 6, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Publication number: 20180096843
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: November 17, 2017
    Publication date: April 5, 2018
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Patent number: 9837265
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: December 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Patent number: 9653327
    Abstract: Embodiments of the invention generally relate to methods of removing and/or cleaning a substrate surface having different material layers disposed thereon using water vapor plasma treatment. In one embodiment, a method for cleaning a surface of a substrate includes positioning a substrate into a processing chamber, the substrate having a dielectric layer disposed thereon forming openings on the substrate, exposing the dielectric layer disposed on the substrate to water vapor supplied into the chamber to form a plasma in the water vapor, maintaining a process pressure in the chamber at between about 1 Torr and about 120 Torr, and cleaning the contact structure formed on the substrate.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 16, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Chiu Chan, Martin J. Seamons, Bok Heon Kim
  • Publication number: 20160307752
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Prashant Kumar KULSHRESHTHA, Sudha RATHI, Praket P. JHA, Saptarshi BASU, Kwangduk Douglas LEE, Martin J. SEAMONS, Bok Hoen KIM, Ganesh BALASUBRAMANIAN, Ziqing DUAN, Lei JING, Mandar B. PANDIT
  • Patent number: 9390910
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 12, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Publication number: 20160099147
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: November 20, 2014
    Publication date: April 7, 2016
    Inventors: Prashant Kumar KULSHRESHTHA, Sudha RATHI, Praket P. JHA, Saptarshi BASU, Kwangduk Douglas LEE, Martin J. SEAMONS, Bok Hoen KIM, Ganesh BALASUBRAMANIAN, Ziqing DUAN, Lei JING, Mandar B. PANDIT
  • Publication number: 20120285481
    Abstract: Embodiments of the invention generally relate to methods of removing and/or cleaning a substrate surface having different material layers disposed thereon using water vapor plasma treatment. In one embodiment, a method for cleaning a surface of a substrate includes positioning a substrate into a processing chamber, the substrate having a dielectric layer disposed thereon forming openings on the substrate, exposing the dielectric layer disposed on the substrate to water vapor supplied into the chamber to form a plasma in the water vapor, maintaining a process pressure in the chamber at between about 1 Torr and about 120 Torr, and cleaning the contact structure formed on the substrate.
    Type: Application
    Filed: November 8, 2011
    Publication date: November 15, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Chiu Chan, Martin J. Seamons, Bok Heon Kim
  • Patent number: 8282734
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 9, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20120204795
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Patent number: 8125034
    Abstract: A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wendy H. Yeh, Martin J. Seamons, Matthew Spuller, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Sudha Rathi
  • Publication number: 20100239979
    Abstract: A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 23, 2010
    Inventors: Wendy H. Yeh, Martin J. Seamons, Matthew Spuller, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Sudha Rathi
  • Patent number: 7776516
    Abstract: A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wendy H. Yeh, Martin J. Seamons, Matthew Spuller, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Sudha Rathi
  • Patent number: 7514125
    Abstract: Methods of making an article having a protective coating for use in semiconductor applications are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20090044753
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 19, 2009
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20080020319
    Abstract: A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 24, 2008
    Inventors: Wendy H. Yeh, Martin J. Seamons, Matthew Spuller, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Sudha Rathi
  • Publication number: 20070295272
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: February 28, 2007
    Publication date: December 27, 2007
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Patent number: 6913938
    Abstract: A method of film deposition in a chemical vapor deposition (CVD) process includes (a) providing a model for CVD deposition of a film that defines a plurality of regions on a wafer and identifies one or more film properties for at least two regions of the wafer and at least one deposition model variable that correlates with the one or more film properties; (b) depositing a film onto a wafer using a first deposition recipe comprising at least one deposition recipe parameter that corresponds to the at least one deposition variable; (c) measuring a film property of at least one of the one or more film properties for the deposited film of step (b) for each of the at least two regions of the wafer and determining a film property; (d) calculating an updated deposition model based upon the film property of step (c) and the model of step (a); and (e) calculating an updated deposition recipe based upon the updated model of step (d) to maintain a target film property.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: July 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Arulkumar P. Shanmugasundram, Alexander T. Schwarm, Ilias Iliopoulos, Alexander Parkhomovsky, Martin J. Seamons
  • Publication number: 20030049390
    Abstract: A method of film deposition in a chemical vapor deposition (CVD) process includes (a) providing a model for CVD deposition of a film that defines a plurality of regions on a wafer and identifies one or more film properties for at least two regions of the wafer and at least one deposition model variable that correlates with the one or more film properties; (b) depositing a film onto a wafer using a first deposition recipe comprising at least one deposition recipe parameter that corresponds to the at least one deposition variable; (c) measuring a film property of at least one of the one or more film properties for the deposited film of step (b) for each of the at least two regions of the wafer and determining a film property; (d) calculating an updated deposition model based upon the film property of step (c) and the model of step (a); and (e) calculating an updated deposition recipe based upon the updated model of step (d) to maintain a target film property.
    Type: Application
    Filed: June 18, 2002
    Publication date: March 13, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Arulkumar P. Shanmugasundram, Alexander T. Schwarm, Ilias Iliopoulos, Alexander Parkhomovsky, Martin J. Seamons