Patents by Inventor Martin Jan Tuinier

Martin Jan Tuinier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8857212
    Abstract: The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed stream, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed stream comprising the contaminant or the mixture of contaminants into and through a cold porous body having a temperature below the sublimation temperature of the contaminant or the mixture of contaminants and contacting the CH4-comprising gaseous feed stream at elevated pressure with the surface of the cold porous body to obtain a porous body comprising solid contaminant or mixture of contaminants and a contaminant-depleted product gas; and b) reducing the pressure to obtain fluid contaminant or mixture of contaminants and a cold porous body. c) removing the fluid contaminant or mixture of contaminants, wherein the contaminant is selected from CO2, hydrogen sulphide, mercaptans, siloxanes and carbonyl sulphide, or a mixture thereof.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Martin Van Sint Annaland, Martin Jan Tuinier
  • Publication number: 20130296627
    Abstract: The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed stream, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed stream comprising the contaminant or the mixture of contaminants into and through a cold porous body having a temperature below the sublimation temperature of the contaminant or the mixture of contaminants and contacting the CH4-comprising gaseous feed stream at elevated pressure with the surface of the cold porous body to obtain a porous body comprising solid contaminant or mixture of contaminants and a contaminant-depleted product gas; and b) reducing the pressure to obtain fluid contaminant or mixture of contaminants and a cold porous body. c) removing the fluid contaminant or mixture of contaminants, wherein the contaminant is selected from CO2, hydrogen sulphide, mercaptans, siloxanes and carbonyl sulphide, or a mixture thereof.
    Type: Application
    Filed: October 10, 2011
    Publication date: November 7, 2013
    Inventors: Martin Van Sint Annaland, Martin Jan Tuinier
  • Patent number: 8511113
    Abstract: The invention provides a process for the separation of CO2 from a gaseous feed stream, comprising the subsequent steps of: a) cooling a porous body in the form of a fixed bed (101,102,103) to a temperature below the sublimation temperature of CO2 to obtain a cold body; b) contacting a gaseous feed stream (120) comprising CO2 and one or more other gaseous compounds with the surface of the cold body to obtain a body comprising solid CO2 and a CO2-depleted effluent gas (124); and c) removing the solid CO2 by exposing the porous body comprising solid CO2 to a fluid CO2 stream (130) having a temperature above the sublimation temperature of CO2 whereby fluid CO2 (136) and a warm porous body are obtained.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: August 20, 2013
    Assignee: Shell Oil Company
    Inventors: Gerrit Jan Barend Assink, Gert Jan Kramer, Martin Van Sint Annaland, Martin Jan Tuinier
  • Publication number: 20110023537
    Abstract: The invention provides a process for the separation of CO2 from a gaseous feed stream, comprising the subsequent steps of: a) cooling a porous body in the form of a fixed bed (101,102,103) to a temperature below the sublimation temperature of CO2 to obtain a cold body; b) contacting a gaseous feed stream (120) comprising CO2 and one or more other gaseous compounds with the surface of the cold body to obtain a body comprising solid CO2 and a CO2-depleted effluent gas (124); and c) removing the solid CO2 by exposing the porous body comprising solid CO2 to a fluid CO2 stream (130) having a temperature above the sublimation temperature of CO2 whereby fluid CO2 (136) and a warm porous body are obtained.
    Type: Application
    Filed: October 10, 2008
    Publication date: February 3, 2011
    Inventors: Gerrit Jan Barend Assink, Gert Jan Kramer, Martin Van Sint Annaland, Martin Jan Tuinier