Patents by Inventor Martin Johansson

Martin Johansson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11381445
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 5, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20220173520
    Abstract: The present disclosure relates to a metasurface arrangement including a first metasurface and a second metasurface which run mutually parallel and face each other. Each metasurface includes a corresponding periodic or quasi-periodic structure formed in a respective pattern. The first metasurface is formed in a dielectric material structure and the second metasurface is formed in either a dielectric material structure or in an electrically conducting structure. The periodic or quasi-periodic structure on the first metasurface is configured to yield a first response to an incident electromagnetic wave between the two metasurfaces, and the periodic or quasi-periodic structure on the second metasurface is configured to yield a second response to the incident electromagnetic wave between the two metasurfaces that is equivalent to the first response, thereby rendering the two metasurfaces mutually electromagnetically symmetric.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 2, 2022
    Inventors: Lars MANHOLM, Oscar QUEVEDO-TERUEL, David Gonzalez Gallardo, Astrid ALGABA BRAZALEZ, Martin JOHANSSON
  • Publication number: 20220149921
    Abstract: There is provided mechanisms for beam selection. A method is performed by a network node. The method comprises performing a beam management procedure for at least two terminal devices. During the beam management procedure reference signals are transmitted in a beam sweep as performed in a set of beams. During the beam management procedure, each of the at least two terminal devices reports at least two beams in the set of beams for which the reference signals have been received with highest power. The method comprises selecting which beams to serve the at least two terminal devices based jointly on the reports and a mutual interference criterion for the at least two terminal devices.
    Type: Application
    Filed: February 28, 2019
    Publication date: May 12, 2022
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas NILSSON, Sven PETERSSON, Niklas JALDÉN, Martin JOHANSSON
  • Publication number: 20220139527
    Abstract: The present document discloses a method of processing a sample obtained from a livestock animal, comprising applying at least some of said milk to a test surface of a growth medium test plate, waiting for a time sufficient to allow microbial growth to form on said test surface, acquiring a visual spectrum image depicting at least part of the test surface, using an image capture device, and providing a computer-implemented pre-trained image classifier algorithm, said image classifier algorithm being pre-trained to determine a microorganism type based on a visible spectrum image depicting a growth pattern of a known microorganism, and applying said image to the pre-trained image classifier algorithm to determine a microorganism type based on a microorganism growth pattern visible on the image.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 5, 2022
    Inventors: Ellinor Eineren, Martin Johansson, Yousif Touma, David Gheel, Olliver Forsgren
  • Publication number: 20220062127
    Abstract: There is provided a petrolatum substitute. The petrolatum substitute preparation comprises 1-20 wt % of at least one oil thickening agent, 7-40 wt % of at least one structuring agent, 0.5-10 wt % of at least one phytosterol or ester thereof, and 30-92 wt % of at least one emollient, wherein the preparation has a melting point of 35° C. or more. The petrolatum substitute preparation can be used in essentially all applications where petrolatum is used today. The substitute can be made renewable and the use of over-exploited natural products is minimized. The preparation is less irritant and has excellent moisture barrier properties when applied to human skin. Further it is less energy consuming to manufacture.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Inventors: Jari ALANDER, Staffan NORBERG, Mette SKOVGAARD, Martin JOHANSSON
  • Publication number: 20220008088
    Abstract: A drill bit for drilling a cavity or a recess into a skull, wherein the cavity or the recess is configured to receive an implantable fixture screw unit of a hearing aid system, is disclosed. The drill bit includes a first part including a drill tip with a first drill diameter, wherein the drill tip comprises a tip angle of between 137 degrees to 143 degrees along a longitudinal axis of the drill bit and wherein the drill tip comprises a back rake angle of between ?1 degree and +1 degree, in particular a back rake angle of substantially 0 degrees, a second part including a plurality of flute blades with a second drill diameter, wherein the second drill diameter is greater that the first drill diameter, and a transition part which is arranged between the first part and the second part and along the longitudinal axis, wherein the transition part includes a body clearance.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 13, 2022
    Applicant: Oticon Medical A/S
    Inventors: Hanna PETERS, Emelie LAGER, Anton HEDSTRÖM, Martin JOHANSSON, Thomas ERIKSSON
  • Publication number: 20210384636
    Abstract: There is provided a parallel plate unit cell for a parallel plate arrangement. The parallel plate unit cell comprises a top layer, and a bottom layer. Each of the top layer and the bottom layer has a respective metasurface. The top layer and the bottom layer are arranged in a parallel plate configuration with respect to each other such that the metasurfaces face each other. The top layer and the bottom layer are physically separated by a gap. The gap at least partly is filled with a material having a refractive index n1, where n1>1.2.
    Type: Application
    Filed: October 24, 2018
    Publication date: December 9, 2021
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Oscar QUEVEDO-TERUEL, Martin MATTSSON, Astrid ALGABA BRAZALEZ, Lars MANHOLM, Kristoffer ANDERSSON, Martin JOHANSSON
  • Publication number: 20210344396
    Abstract: A wireless communication system node has at least two antenna ports, a beamforming controller, and a beamforming network. The beamforming network has at least two beam ports that are adapted to provide corresponding beams. The beamforming controller is arranged to control the beamforming network such that the beams have a common envelope in a desired plane, where the common envelope is adapted to provide coverage for a certain communication system sector.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: Henrik Jidhage, Martin Johansson
  • Patent number: 11128358
    Abstract: The present disclosure relates to a wireless communication system node (1), where the node (1) comprises at least two antenna ports (P1A, P1B, P1C, P1D; P2A, P2B, P2C, P2D). The node (1) further comprises a beamforming controller (2) and a 5 beamforming network (3) which in turn comprises at least two beam ports (4, 5, 6, 7; 8, 9, 10, 11) that are adapted to provide corresponding beams (12, 13, 14, 15; 16, 17, 18, 19). The beamforming controller (2) is arranged to control the beamforming network (3) such that the beams (12, 13, 14, 15; 16, 17, 18, 19) have a common envelope (20) in a desired plane, where the common envelope (20) is adapted to a 10 desired coverage for a certain communication system sector (37).
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 21, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Henrik Jidhage, Martin Johansson
  • Publication number: 20210268281
    Abstract: According to an embodiment, an implantable hearing aid system is disclosed. The implantable hearing aid system includes an external unit which includes an electronic unit operationally coupled to a first inductive coil arrangement configured to transmit power and/or data signals, and where the first inductive coil arrangement includes a loop structure with coils wound around and along at least a part of length of the loop structure, and the loop structure comprises an opening. Furthermore, the implantable hearing aid system includes an implantable unit which comprises a second inductive coil arrangement configured to form a transcutaneous link with the loop structure and to receive the power and/or data signals over the transcutaneous link, and where the second inductive coil arrangement is configured to be implanted fully or partially within a part of an ear of a user of the implantable hearing aid system.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 2, 2021
    Applicant: Oticon Medical A/S
    Inventors: Martin JOHANSSON, Wilhelm RÅBERGH, Maja THORNING-SCHMIDT, Martin GYLSTORFF, Stefan VUCUREVIC
  • Patent number: 11108455
    Abstract: A method for selecting a geometry of an antenna array in a multiple-input multiple-output, MIMO, radio communication system (100), the method comprising; obtaining a first parameter set comprising a first communication distance D1 and a first carrier frequency f1, and a second parameter set comprising a second communication distance D2 and a second carrier frequency f2, determining a first radio communication performance measure based on the first parameter set in dependence of antenna array geometry, and a second radio communication performance measure based on the second parameter set in dependence of antenna array geometry, and selecting the antenna array geometry based on the first radio communication performance measure and on the second radio communication performance measure.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 31, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mikael Coldrey, Lei Bao, Jonas Hansryd, Martin Johansson, Christina Larsson
  • Patent number: 11063647
    Abstract: The present disclosure relates to a device (140) adapted for aligning a first directive antenna (101) in an alignment direction D1 towards a second antenna (102). The device is adapted to acquire measurement data regarding: ?—a first signal power (301) received from the second antenna (102) using a first effective antenna aperture (202) when the first directive antenna (101) is moved along an angular span (306) passing a desired alignment angle (307) along a certain direction (111, 112); and ?—a second signal power (302) received from the second antenna (102) using a second effective antenna aperture (203) when the first directive antenna (101) is moved along an angular span (306) passing a desired alignment angle (307) along a certain direction, the second effective antenna aperture (203) being smaller than the first effective antenna aperture (202).
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: July 13, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Per Ligander, Martin Johansson, Jan Sandberg, Daniel Sjöberg
  • Publication number: 20210148779
    Abstract: A moisture detection system (100) comprises a cable (102), a voltage regulator (104) and a differential amplifier (106). The cable (102) comprises an elongated non-conductive moisture permeable structure (108), a first elongated lead (110) and a second elongated lead (112). The first and second leads (110, 112) are substantially equal in length and are connected to the differential amplifier (106) and arranged such that they are not in galvanic contact with each other at any location along the cable (102). The voltage regulator (104) is configured to supply a regulated voltage to the first lead (110) and to the differential amplifier (106). The differential amplifier (106) is configured to determine a voltage difference between the first and second leads (110, 112), and configured to provide a signal that is representative of the determined voltage difference.
    Type: Application
    Filed: June 15, 2017
    Publication date: May 20, 2021
    Applicant: MIKRODUST AB
    Inventors: Mats Iderup, Martin Johansson
  • Patent number: 11011820
    Abstract: The disclosure relates to an antenna system 1 for providing coverage for multiple-input multiple-output, MIMO, communication in mixed type of spaces. The antenna system 1 comprises a leaky cable 2 arranged to provide coverage in a first type of space, and a distributed antenna system 3 comprising one or more antennas 31, 32, 33, 34 and ranged to provide coverage in a second type of space, wherein each of the one or more antennas 31, 32, 33, 34 of the distributed antenna system 3 is connected to the leaky cable 2 through a circulator 41, 42, 43, and wherein the MIMO communication is enabled by both ends of the leaky cable 2 being adapted for connection to a respective antenna port 8, 9 of a network node 5 configured for 10 MIMO communication. The disclosure also relates to a related method and system.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 18, 2021
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Martin Johansson, Henrik Asplund, Mikael Coldrey, Andreas Nilsson
  • Publication number: 20210139455
    Abstract: The invention relates to novel molecules having the general formula (I), and which molecules are useful to treat a disorder or disease characterized by bronchoconstriction, e.g. COPD and asthma inflammation and/or vasoconstriction, e.g. hypertension.
    Type: Application
    Filed: July 5, 2019
    Publication date: May 13, 2021
    Inventors: Maria DALENCE, Martin JOHANSSON, Viveca THORNQVIST OLTNER, Jörgen TOFTERED, Davis WENSBO
  • Publication number: 20210126726
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 31, 2020
    Publication date: April 29, 2021
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10944173
    Abstract: An antenna array comprising at least two sets of antenna unit elements is disclosed. Each set of antenna unit elements supports a respective frequency band, wherein a vertical center-to-center distance between the antenna unit elements of a lowest frequency among the respective frequency bands is more than twice the vertical extension, D, of convex hull containing one antenna unit element of the lowest frequency, and antenna unit elements of at least a second set are arranged interleaved with the antenna unit elements of the lowest frequency. An arrangement comprising the antenna array and a network node is also disclosed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 9, 2021
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Martin Johansson, Fredrik Athley, Andreas Nilsson, Sven Petersson
  • Patent number: 10938497
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 2, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10911963
    Abstract: The present invention relates to an active antenna system, AAS, for controlling coverage in a telecommunication network, and the AAS comprising a plurality of subarrays each having multiple radiating elements. The AAS is configured to provide coverage in a coverage angular range and the plurality of subarrays comprising at least two types of subarrays. The at least two types of subarrays comprises: a first type of subarray with a first radiation pattern having at least a first angular region with gain below a first threshold value, and a second type of subarray with a second radiation pattern having at least a second angular region with gain below a second threshold value, wherein the second radiation pattern deviates from the first radiation pattern and the first angular region in the first radiation pattern differs from the second angular region in the second radiation pattern.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: February 2, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Sven Petersson, Bo Hagerman, Martin Johansson, Stefan Johansson
  • Publication number: 20210013946
    Abstract: A method for selecting a geometry of an antenna array in a multiple-input multiple-output, MIMO, radio communication system (100), the method comprising; obtaining a first parameter set comprising a first communication distance D1 and a first carrier frequency f1, and a second parameter set comprising a second communication distance D2 and a second carrier frequency f2, determining a first radio communication performance measure based on the first parameter set in dependence of antenna array geometry, and a second radio communication performance measure based on the second parameter set in dependence of antenna array geometry, and selecting the antenna array geometry based on the first radio communication performance measure and on the second radio communication performance measure.
    Type: Application
    Filed: April 24, 2018
    Publication date: January 14, 2021
    Inventors: Mikael Coldrey, Lei Bao, Jonas Hansryd, Martin Johansson, Christina Larsson