Patents by Inventor Martin Lawrence Panchula

Martin Lawrence Panchula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076201
    Abstract: Provided are processes for the formation of electrochemically active materials such as lithiated transition metal oxides that solve prior issues with throughput and calcination. The processes include forming the materials in the presence of a processing additive that includes potassium prior to calcination that produces active materials with increased primary particle grain sizes.
    Type: Application
    Filed: October 30, 2023
    Publication date: March 7, 2024
    Applicant: BASF Corporation
    Inventors: William C. Mays, Benjamin Reichman, Martin Lawrence Panchula
  • Patent number: 11905184
    Abstract: Provided are processes for the formation of electrochemically active materials such as lithiated transition metal oxides that solve prior issues with throughput and calcination. The processes include forming the materials in the presence of a processing additive that includes potassium prior to calcination that produces active materials with increased primary particle grain sizes.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 20, 2024
    Assignee: BASF Corporation
    Inventors: William C. Mays, Benjamin Reichman, Martin Lawrence Panchula
  • Publication number: 20240010525
    Abstract: Disclosed herein are processes for isolating purified water from a waste stream, such as, e.g., a waste stream formed in the manufacture or recycling of batteries, and further e.g., processes for isolating purified water suitable for use in downstream industrial processes from a waste stream generated during delithiation of a lithium metal oxide material.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 11, 2024
    Inventors: Jack Bender, Tinoush Dinn, William C. Mays, Martin Lawrence Panchula, Dieter G. Von Deak
  • Publication number: 20240011123
    Abstract: Disclosed herein are methods of recycling elements, such as, e.g., lithium and/or nickel, from a solution, such as, e.g., methods of recovering reusable lithium and nickel from a waste stream produced by the delithiation of a lithium nickel oxide material.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 11, 2024
    Inventors: Tinoush Dinn, William C. Mays, Martin Lawrence Panchula, Dieter G. Von Deak
  • Publication number: 20230114285
    Abstract: Provided are processes of removing lithium from an electrochemically active composition. The process of removing lithium from an electrochemically active composition may include providing an electrochemically active composition and combining the electrochemically active composition with a strong oxidizer optionally at a pH of 1.5 or greater for a lithium removal time. The electrochemically active composition may include Li, Ni, and O. The electrochemically active composition may optionally have an initial Li/M at % ratio of 0.8 to 1.3. According to some embodiments of the present disclosure, the lithium removal time may be such that a second Li/M at % ratio following the lithium removal time is 0.6 or less, thereby forming a delithiated electrochemically active composition.
    Type: Application
    Filed: March 9, 2020
    Publication date: April 13, 2023
    Applicant: BASF Corporation
    Inventors: William C. MAYS, Martin Lawrence PANCHULA, Dieter G. VON DEAK, Benjamin REICHMAN, Diana F. WONG
  • Publication number: 20210387864
    Abstract: Process for making lithiated transition metal oxide particles comprising the steps of: (a) Providing a particulate mixed transition metal precursor comprising Ni and at least one transition metal selected from Co and Mn, and, optionally, at least one further metal selected from Ti, Zr, Mo, W, Al, Mg, Nb, and Ta, (b) mixing said precursor with at least one compound of lithium and at least el one processing additive comprising potassium, (c) treating the mixture obtained according to step (b) at a temperature in the range of from 700 to 1,000° C.
    Type: Application
    Filed: November 6, 2019
    Publication date: December 16, 2021
    Inventors: William MAYS, Benjamin REICHMAN, Martin Lawrence PANCHULA
  • Publication number: 20200255346
    Abstract: Vessels selected from crucibles, pans, open cups and saggars essentially comprising of two components, from which (A) one component being a ceramic matrix composite, and (B) the second component being from metal or alloy, and wherein component (A) is the inner one.
    Type: Application
    Filed: June 19, 2017
    Publication date: August 13, 2020
    Applicant: BASF SE
    Inventors: Benedikt KALO, William DALOZ, Martin Lawrence PANCHULA
  • Publication number: 20200148549
    Abstract: Provided are processes for the formation of electrochemically active materials such as lithiated transition metal oxides that solve prior issues with throughput and calcination. The processes include forming the materials in the presence of a processing additive that includes potassium prior to calcination that produces active materials with increased primary particle grain sizes.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: William C. Mays, Benjamin Reichman, Martin Lawrence Panchula
  • Publication number: 20120148770
    Abstract: A high silica glass composition comprising about 82 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 18 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 14, 2012
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Tianjun Rong, Samuel Conzone, Martin Lawrence Panchula