Patents by Inventor Martin Mallinson

Martin Mallinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160119710
    Abstract: An apparatus is disclosed for inputting digital data on the output channel(s) of an audio subsystem in an audio device, without interfering with normal operation of the audio subsystem. The described circuit includes a resistive element in parallel with the expected load device, such as a headphone or speaker. The resistive element receives a modulated digital signal from a data source or a switch, and the instantaneous current through the resistive element due to the modulated digital signal is reflected in a current feedback mechanism of the audio subsystem. Demodulation logic retrieves the digital signal from the current measured by the current feedback mechanism. A capacitor is provided to prevent the current in the resistive element from the digital signal from impacting the average DC current that the feedback mechanism uses to evaluate the load device.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Inventors: A. Martin Mallinson, Dustin Dale Forman, Robert Lynn Blair, Peter John Frith
  • Patent number: 9323959
    Abstract: A circuit that provides a rotating coefficient FIR filter with all necessary coefficient sets present at the same time, without the need for delay elements, devices providing for adjustable impedances, or buffers is described. An input signal is sampled in a round robin fashion by a plurality of switches and capacitors. The capacitors are connected directly to sets of impedance devices. Each set of impedance devices implements the coefficients of the desired frequency response of the filter, adjusted to compensate for the decay of samples in the capacitors between samples. The impedance devices in each set are connected to the capacitors in a different order from each other set, so that each set of impedance devices will produce the desired frequency response when a different one of the capacitor contains a new sample of the input signal. Switches connect the sets of impedance devices to an output and a virtual ground, only one switch being connected to the output at a time to provide the output signal.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: April 26, 2016
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Publication number: 20160079943
    Abstract: An apparatus is disclosed for providing a common mode voltage to the inputs of a first differential amplifier which outputs the difference between two signals. A second differential amplifier receives the output of the first differential amplifier, and the output of the second differential amplifier is fed back to the inputs of the first differential amplifier as a common mode voltage. Since both inputs of the first differential amplifier receive the fed hack common mode voltage, the first differential amplifier still outputs only the difference in the two signals, but the presence of the common mode voltage allows the first differential amplifier to operate with lower noise if the voltage levels of the inputs to the first differential amplifier vary. The second differential amplifier may be of significantly lower quality and cost than the first differential amplifier, without affecting the performance of the first differential amplifier.
    Type: Application
    Filed: December 12, 2014
    Publication date: March 17, 2016
    Inventor: A. Martin Mallinson
  • Patent number: 9287851
    Abstract: A method and system for designing and implementing a finite impulse response (FIR) filter to create a plurality of output signals, each output signal having the same frequency but at a different phase shift from the other output(s), is described. Values are determined for the resistors, or other elements having impedance values, in a FIR filter having a plurality of outputs, such that each output has the same frequency response but a different phase than the other output(s). This is accomplished by the inclusion of a phase factor in the time domain calculation of the resistor values that does not change the response in the frequency domain. The phase shift is constant and independent of the frequency of the output signal.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 15, 2016
    Assignee: ESS Technology, Inc.
    Inventors: A. Martin Mallinson, Hu Jing Yao, Dustin Forman
  • Patent number: 9264019
    Abstract: FIR filters for compensating for fixed pattern jitter, and methods of constructing the same, are disclosed. In one embodiment, a FIR filter filters a signal having a desired frequency component, with the coefficients of the FIR filter selected so that the filter is the equivalent of two combined FIR filters, one having the desired frequency at the filter's peak output frequency, and a second in which the signal is delayed by a time equal to half of a period of a different frequency which is desired to be removed from the output signal. In another embodiment, a FIR filter includes a delay line with a total delay longer than the period of the jitter. A signal is passed down the delay line, the number of signal edges that have occurred as the signal passes each delay element in the counted. Drivers corresponding to the delay elements in which a number of signal edges occur at the desired frequency during the period of fixed pattern jitter activate impedance elements attached to those delay elements.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: February 16, 2016
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Publication number: 20160006416
    Abstract: A system and method is disclosed for placing some of the elements of a FIR filter into a high impedance state in certain situations. When it is detected that the signal to an impedance element is the same as the previous value, then the driver of that impedance element is “turned off” or goes into a high impedance state, so that no current flows through that impedance element, and it no longer contributes to the filter output. Alternatively, if the impedance elements are the same between two adjacent taps of the delay line, the driver of one of those impedance elements may be turned off or go into a high impedance state. The technique may be particularly useful in differential output filters. Turning off a driver effectively removes the attached impedance element from the filter and reduces current flow and power consumption, thus extending battery life in mobile devices.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Inventor: A. Martin Mallinson
  • Patent number: 9209806
    Abstract: A delay circuit in which the delay is independent of variations in the power supply which powers the logic gates of the delay circuit is disclosed. By separating the CMOS transistors that form each logic gate by additional CMOS bias transistors which are biased at a controlled voltage, variations in the gate delay of the inverter transistors due to variations in the power supply voltage for the inverter transistors may be minimized. In one embodiment, the constant bias voltage may be provided by a constant current source comprising a series of amplifiers each having a gain significantly less than one connected to a triple cascode.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: December 8, 2015
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 9130645
    Abstract: A method and system is disclosed for simultaneously down-converting multiple selected signals, such as RF signals, into adjacent ranges in an intermediate frequency band so that the total resulting bandwidth, and thus the sampling rate required to digitize the signal, is minimized. A first signal is down-converted into a range starting at a lowest selected frequency in the IF band. The next signal is down-converted, into a range higher than, but near or adjacent to, the down-converted range of the first signal, and so on. A guard band may be left between the signals if desired. In this way, the selected signals occupy the minimum bandwidth required. When the selection of signals to be down-converted is changed, the frequency ranges are dynamically adjusted so that the signals being down-converted always occupy the lowest ranges of the IF band.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: September 8, 2015
    Assignee: ESS Technology, Inc.
    Inventors: Robert Lynn Blair, A. Martin Mallinson
  • Publication number: 20150222249
    Abstract: Channel select filter circuits are described. One circuit implements a multiplying element and digital-to-analog converter as a differential current mode device. Another circuit implementing a multiplying element and digital-to-analog converter with weighted addition, deferred after multiplication of the digital-to-analog converter and multiplier combination. In one such circuit, substantially equal current source magnitudes are in different columns of the circuit. Another such circuit, with substantially equal current source magnitudes, uses non-radix2. Another such circuit, with substantially equal current source magnitudes, has partial segmentation. Another circuit implements a multiplying element and digital-to-analog converter, with partial segmentation, scrambling bit allocation for elements. One such circuit scrambles bit allocation on equally weighted segments, as described herein.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 6, 2015
    Inventor: A. Martin Mallinson
  • Patent number: 9098663
    Abstract: A method and system for generating and matching complex series and/or parallel combinations of nominally identical initial elements to achieve an arbitrary compound value is disclosed. A recursive algorithm successively adds one or more similar nominal two-terminal elements to generate a series and/or parallel compound combination of nominal elements, the compound combination having a desired impedance. The compound value, and thus the ratio between two compound values, can be determined to almost any desired degree of accuracy, with potential errors greatly reduced from those typical in the construction of individual elements of different values. Since the initial elements are nominally identical, the compound value, and the ratio between values, depends primarily upon the connections of the initial elements, rather than their geometry, and thus remain virtually constant regardless of variations in the manufacturing process.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 4, 2015
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Publication number: 20150177759
    Abstract: A voltage regulator for providing a constant voltage to a circuit is described in which a series regulator acts as the current source for a shunt regulator and the series regulator in turn is controlled by the current diverted from the output by the shunt regulator. The current being diverted by the shunt regulator is measured, either directly or by measuring a related operating parameter. When current below or above a certain desired amount is being diverted from the load by the shunt regulator, a signal is sent to the series regulator causing the series regulator to provide more or less current respectively, so that the shunt regulator again diverts the desired amount of current and the output voltage remains constant. This configuration results in efficiency near that of a series regulator while maintaining the better frequency response of a shunt regulator.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 25, 2015
    Inventor: A. Martin Mallinson
  • Patent number: 9065384
    Abstract: A system and method is disclosed for selecting between two electronic signals, one of high quality, such as music audio, and the other of low quality, such as telephone call audio, in a smart phone, tablet or other device. In one embodiment, when the low quality signal is to be used this is accomplished by disabling the amplifier output to disconnect the high quality audio signal from the output port, rather than by means of a switch between the amplifier and the output port as in the prior art. This eliminates degradation of the signal due to the switch when the high quality signal is to be used. The amplifier typically has an associated feedback resistor network, and this may also be disconnected by means of a switch when the low quality signal is to be used, thus preventing distortion of the low quality signal due to the feedback network being a parallel load to the output port.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 23, 2015
    Assignee: ESS Technology, Inc.
    Inventors: Robert L. Blair, Hu Jing Yao, Dustin Dale Forman, A. Martin Mallinson
  • Patent number: 8994422
    Abstract: A method and system is disclosed in which the phase detector in a phase-locked loop is able to run at the fastest speed appropriate for a reference signal. A frequency offset is added to the output frequency of the phase-locked loop, to alter the frequency fed to the frequency divider which would receive the output frequency in a conventional PLL to an intermediate frequency. The frequency offset is selected so that the ratio of the intermediate frequency to the reference frequency is a simple fraction, and preferably an integer, i.e., the intermediate frequency is a multiple of the reference frequency. In cases where the relationship between the output frequency and the reference frequency is largely relatively prime, the phase detector is thus able to receive signals at the frequency of the reference signal and operate at the fastest speed appropriate for the reference signal.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: March 31, 2015
    Assignee: ESS Technology, Inc.
    Inventors: Hu Jing Yao, Dustin Dale Forman, A. Martin Mallinson
  • Patent number: 8984035
    Abstract: Channel select filter circuits are described. One circuit implements a multiplying element and digital-to-analog converter as a differential current mode device. Another circuit implementing a multiplying element and digital-to-analog converter with weighted addition, deferred after multiplication of the digital-to-analog converter and multiplier combination. In one such circuit, substantially equal current source magnitudes are in different columns of the circuit. Another such circuit, with substantially equal current source magnitudes, uses non-radix2. Another such circuit, with substantially equal current source magnitudes, has partial segmentation. Another circuit implements a multiplying element and digital-to-analog converter, with partial segmentation, scrambling bit allocation for elements. One such circuit scrambles bit allocation on equally weighted segments, as described herein.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: March 17, 2015
    Assignee: ESS Technology, Inc.
    Inventor: Andrew Martin Mallinson
  • Publication number: 20150046894
    Abstract: An improved method for the placement and routing of compound elements, each comprising a series/parallel combination of nominally identical elements, is disclosed. The method treats each compound element as a separate cell (the sub-circuit construct commonly used in silicon chip design) so as to treat as a unit all the nominally identical elements that make up a compound value, and place them as a single group in the design of a chip. This results in the compound elements being placed as units and routed in such a way that all of the nominal elements are located together and any effects between compound values are thus relatively localized and optimally isolated.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Inventors: Robert L. Blair, Daniel A. Risler, A Martin Mallinson
  • Publication number: 20150040085
    Abstract: A method and system for generating and matching complex series and/or parallel combinations of nominally identical initial elements to achieve an arbitrary compound value is disclosed. A recursive algorithm successively adds one or more similar nominal two-terminal elements to generate a series and/or parallel compound combination of nominal elements, the compound combination having a desired impedance. The compound value, and thus the ratio between two compound values, can be determined to almost any desired degree of accuracy, with potential errors greatly reduced from those typical in the construction of individual elements of different values. Since the initial elements are nominally identical, the compound value, and the ratio between values, depends primarily upon the connections of the initial elements, rather than their geometry, and thus remain virtually constant regardless of variations in the manufacturing process.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventor: A. Martin Mallinson
  • Patent number: 8937991
    Abstract: A system and method for filtering an analog signal with a finite impulse response (FIR) filter that does not require analog delay elements are disclosed. An analog signal is pulse-width encoded, and the pulse-width encoded signal passed to a delay line comprising unclocked delay elements, such as logic gates, rather than clocked delay elements such as are used in conventional FIR filters. The propagation of the input signal is thus due only to the delay inherent in each gate, and occurs based upon when a signal reaches the gate rather than being caused by a clock signal. As with a conventional FIR filter, weighting elements having impedance are used to weigh the output of each delay element, and the resulting outputs summed to obtain a filtered output signal. For certain signals, such a circuit and method provides a simpler way of filtering than conventional filters.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: January 20, 2015
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 8937506
    Abstract: A circuit that provides a rotating coefficient FIR filter with all necessary coefficient sets present at the same time, without the need for delay elements or devices providing for adjustable impedances is described. An input signal is sampled in round robin fashion by a plurality of sample and hold devices. The outputs of the sample and hold devices are connected to sets of impedance devices. Each set of impedance devices implements the coefficients of the desired frequency response of the filter. The impedance devices in each set are connected to the sample and hold devices in a different order from each other set, so that each set of impedance devices will produce the desired frequency response when a different one of the sampling circuits contains a new sample of the input signal. Switches connect the sets of impedance devices to an output, only one switch being closed at a time to provide the output signal.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: January 20, 2015
    Assignee: ESS Technology, Inc.
    Inventor: A. Martin Mallinson
  • Publication number: 20150003575
    Abstract: FIR filters for compensating for fixed pattern jitter, and methods of constructing the same, are disclosed. In one embodiment, a FIR filter filters a signal having a desired frequency component, with the coefficients of the FIR filter selected so that the filter is the equivalent of two combined FIR filters, one having the desired frequency at the filter's peak output frequency, and a second in which the signal is delayed by a time equal to half of a period of a different frequency which is desired to be removed from the on signal. In another embodiment, a FIR filter includes a delay line with a total delay longer than the period of the jitter. A signal is passed down the delay line, the number of signal edges that have occurred as the signal passes each delay element in the counted. Drivers corresponding to the delay elements in which a number of signal edges occur at the desired frequency during the period of fixed pattern jitter activate impedance elements attached to those delay elements.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 1, 2015
    Inventor: A. Martin Mallinson
  • Publication number: 20140375356
    Abstract: A delay circuit in which the delay is independent of variations in the power supply which powers the logic gates of the delay circuit is disclosed. By separating the CMOS transistors that form each logic gate by additional CMOS bias transistors which are biased at a controlled voltage, variations in the gate delay of the inverter transistors due to variations in the power supply voltage for the inverter transistors may be minimized. In one embodiment, the constant bias voltage may be provided by a constant current source comprising a series of amplifiers each having a gain significantly less than one connected to a triple cascode.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventor: A. Martin Mallinson