Patents by Inventor Martin Ossig

Martin Ossig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087167
    Abstract: A 3D measuring instrument and method of operation is provided that includes a registration camera and a an autofocus camera. The method includes capturing with the registration camera a first registration image of a first plurality of points and a first image with the first camera with the instrument in a first pose. A plurality of three-dimensional (3D) coordinates of points are determined based on the first image. A second registration image of a second plurality of points is captured in a second pose and a focal length of the autofocus camera is adjusted. A second surface image is captured with the first camera having the adjusted focal length. A compensation parameter is determined based in part on the captured second surface image. The determined compensation parameter is stored.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 14, 2024
    Applicant: FARO Technologies, Inc.
    Inventors: Martin Ossig, Johannes Buback
  • Publication number: 20240087269
    Abstract: A method and system of correcting a point cloud is provided. The method includes selecting a region within the point cloud. At least two objects within the region are identified. The at least two objects are re-aligned. At least a portion of the point cloud is aligned based at least in part on the realignment of the at least two objects.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventors: Daniel Döring, Rasmus Debitsch, Gerrit Hillebrand, Martin Ossig
  • Publication number: 20240027592
    Abstract: A system and method for determining a distance is provided. The system includes a scanner that captures a scan-point by emitting a light having a base frequency and at least one measurement frequency and receiving a reflection of the light. Processors determine the distance to the scan-point by using a method that comprises: generating a signal in response to receiving the reflection of light; determining a first distance to the scan-point based on a phase-shift of the signal and the measurement frequency; determining a second distance and a third distance based on a phase-shift of the signal determined using a Fourier transform at the measurement frequency on a pair of adjacent half-cycles; determining a corrected second distance and a corrected third distance by compensating for an error in the second distance and third distance by performing the Fourier transform on the pair of adjacent half-cycles.
    Type: Application
    Filed: July 20, 2022
    Publication date: January 25, 2024
    Inventors: Martin Ossig, Oswin Horvath
  • Publication number: 20230400330
    Abstract: A system includes one or more processors that are configured to compensate a measurement tool by performing a method. The method includes capturing a first data using the measurement tool. The method further includes capturing a second data using the measurement tool. The method further includes detecting a first natural feature in the first data. The method further includes computing a difference in positions of the first natural feature in the first data and the second data respectively. The method further includes computing a compensation parameter to adjust the measurement tool based on the difference computed.
    Type: Application
    Filed: June 7, 2023
    Publication date: December 14, 2023
    Inventors: Jafar Amiri PARIAN, Martin OSSIG, Hani KAABI, Johannes BUBACK, Fabian HARGART
  • Publication number: 20230386085
    Abstract: A system includes a three-dimensional (3D) scanner that captures a 3D point cloud corresponding to one or more objects in a surrounding environment. The system further includes a camera that captures a control image by capturing a plurality of images of the surrounding environment, and an auxiliary camera configured to capture an ultrawide-angle image of the surrounding environment. One or more processors of the system colorize the 3D point cloud using the ultrawide-angle image by mapping the ultrawide-angle image to the 3D point cloud. The system performs a limited system calibration before colorizing each 3D point cloud, and a periodic full system calibration before/after a plurality of 3D point clouds are colorized.
    Type: Application
    Filed: August 15, 2023
    Publication date: November 30, 2023
    Inventors: Jafar Amiri Parian, Martin Ossig, Hani Kaabi
  • Publication number: 20230376636
    Abstract: A method that includes providing a database for storing meta-data that describes steps in a workflow and an order of the steps in the workflow. The meta-data includes, for each of the steps: a reference to an input data file for the step; a description of a transaction performed at the step; and a reference to an output data file generated by the step based at least in part on applying the transaction to the input data file. Data that includes meta-data for a step in the workflow is received and the data is stored in the database. A trace of the workflow is generated based at least in part on contents of the database. The generating is based on receiving a request from a requestor for the trace of the workflow. At least a subset of the trace is output to the requestor.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Martin OSSIG, Oswin HORVATH, Daniel FLOHR
  • Patent number: 11790557
    Abstract: A system includes a three-dimensional (3D) scanner that captures a 3D point cloud corresponding to one or more objects in a surrounding environment. The system further includes a camera that captures a control image by capturing a plurality of images of the surrounding environment, and an auxiliary camera configured to capture an ultrawide-angle image of the surrounding environment. One or more processors of the system colorize the 3D point cloud using the ultrawide-angle image by mapping the ultrawide-angle image to the 3D point cloud. The system performs a limited system calibration before colorizing each 3D point cloud, and a periodic full system calibration before/after a plurality of 3D point clouds are colorized.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: October 17, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Jafar Amiri Parian, Martin Ossig, Hani Kaabi
  • Patent number: 11763491
    Abstract: A 3D measuring instrument includes a registration camera and a surface measuring system having a projector and autofocus camera. In a first pose, the registration camera captures a first registration image of first registration points. The autofocus camera captures a first surface image of first light projected onto the object by the projector and determines first 3D coordinates of points on the object. In a second pose, the registration camera captures a second registration image of second registration points. The autofocus camera adjusts the autofocus mechanism based at least in part on adjusting a focal length to reduce a difference between positions of the first and second registration points. A second surface image of second light is captured. A compensation parameter is determined based at least in part on the first registration image, the second registration image, the first 3D coordinates, the second surface image, and the projected second light.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: September 19, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Martin Ossig, Johannes Buback
  • Patent number: 11755784
    Abstract: A method that includes providing a database for storing meta-data that describes steps in a workflow and an order of the steps in the workflow. The meta-data includes, for each of the steps: a reference to an input data file for the step; a description of a transaction performed at the step; and a reference to an output data file generated by the step based at least in part on applying the transaction to the input data file. Data that includes meta-data for a step in the workflow is received and the data is stored in the database. A trace of the workflow is generated based at least in part on contents of the database. The generating is based on receiving a request from a requestor for the trace of the workflow. At least a subset of the trace is output to the requestor.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: September 12, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Martin Ossig, Oswin Horvath, Daniel Flohr
  • Patent number: 11725928
    Abstract: A handheld device has a projector that projects a pattern of light onto an object, a first camera that captures the projected pattern of light in first images, a second camera that captures the projected pattern of light in second images, a registration camera that captures a succession of third images, one or more processors that determines three-dimensional (3D) coordinates of points on the object based at least in part on the projected pattern, the first images, and the second images, the one or more processors being further operable to register the determined 3D coordinates based at least in part on common features extracted from the succession of third images, and a mobile computing device operably connected to the handheld device and cooperating with the one or more processors, the mobile computing device operable to display the registered 3D coordinates of points.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: August 15, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Daniel Döring, Rolf Heidemann, Martin Ossig, Gerrit Hillebrand
  • Patent number: 11727635
    Abstract: A method for determining three-dimensional (3D) coordinates of an object surface with a 3D measuring device includes forming from the determined 3D coordinates a mesh having a first face, constructing a voxel array aligned to the first face, obtaining a plurality of images from a first camera having a corresponding plurality of poses, obtaining for each voxel in the voxel array a plurality of voxel values obtained from the corresponding plurality of images, determining for each voxel row a quality value determined based at least in part on an average value of a first quantity and a dispersion of the first quantity, the first quantity based at least in part on first voxel values determined as a function of pose, and determining a distance from a point on the first face to the object surface based at least in part on the determined quality values for the voxel rows.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: August 15, 2023
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Martin Ossig, Johannes Buback
  • Publication number: 20230228565
    Abstract: A system and method for measuring three-dimensional (3D) coordinate values of an environment is provided. The system includes a movable base unit a first scanner and a second scanner. One or more processors performing a method that includes causing the first scanner to determine first plurality of coordinate values in a first frame of reference based at least in part on a measurement by at least one sensor. The second scanner determines a second plurality of 3D coordinate values in a second frame of reference as the base unit is moved from a first position to a second position. The determining of the first coordinate values and the second plurality of 3D coordinate values being performed simultaneously. The second plurality of 3D coordinate values are registered in a common frame of reference based on the first plurality of coordinate values.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Johannes Buback, Igor Sapina, Julian Becker, Martin Ossig, Aleksej Frank, Ahmad Ramadneh, Oliver Zweigle, João Santos
  • Patent number: 11692812
    Abstract: A three-dimensional (3D) measurement system, a method of measuring 3D coordinates, and a method of generating dense 3D data is provided. The method of measuring 3D coordinates includes using a first 3D measurement device and a second 3D measurement device in a cooperative manner is provided. The method includes acquiring a first set of 3D coordinates with the first 3D measurement device. The first set of 3D coordinates are transferred to the second 3D measurement device. A second set of 3D coordinates is acquired with the second 3D measurement device. The second set of 3D coordinates are registered to the first set of 3D coordinates in real-time while the second 3D measurement device is acquiring the second set of 3D coordinates.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: July 4, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Daniel Döring, Gerrit Hillebrand, Rasmus Debitsch, Rene Pfeiffer, Martin Ossig, Alexander Kramer
  • Patent number: 11609090
    Abstract: A system and method for measuring three-dimensional (3D) coordinate values of an environment is provided. The system includes a movable base unit a first scanner and a second scanner. One or more processors performing a method that includes causing the first scanner to determine first plurality of coordinate values in a first frame of reference based on an emitted first beam of light and a received first reflected light. The second scanner determines a second plurality of 3D coordinate values in a second frame of reference as the base unit is moved from a first position to a second position. The determining of the first coordinate values and the second plurality of 3D coordinate values being performed simultaneously. The second plurality of 3D coordinate values are registered in a common frame of reference based on the first plurality of coordinate values.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: March 21, 2023
    Assignee: FARO Technologies, Inc.
    Inventors: Johannes Buback, Igor Sapina, Julian Becker, Martin Ossig, Aleksej Frank, Ahmad Ramadneh, Oliver Zweigle, João Santos
  • Patent number: 11506767
    Abstract: A method for scanning and measuring using a 3D measurement device is provided. The method includes providing the 3D measurement device having a light emitter, a light receiver and a command and evaluation device. The 3D measurement device is further includes a first near-field communication (NFC) device having a first antenna. A second NFC device having a second antenna is positioned adjacent the 3D measurement device. An NFC link is established between the first NFC device and the 3D measurement device. An identifier is transmitted from the second NFC device to the 3D measurement device. It is determined that the second NFC device is authorized to communicate with the 3D measurement device. Commands are transferred to the 3D measurement device from the second NFC device based at least in part on the determination that the second NFC device is authorized to communicate with the 3D measurement device.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: November 22, 2022
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Martin Ossig, Andreas Ditte
  • Publication number: 20220358678
    Abstract: A 3D measuring instrument includes a registration camera and a surface measuring system having a projector and autofocus camera. In a first pose, the registration camera captures a first registration image of first registration points. The autofocus camera captures a first surface image of first light projected onto the object by the projector and determines first 3D coordinates of points on the object. In a second pose, the registration camera captures a second registration image of second registration points. The autofocus camera adjusts the autofocus mechanism based at least in part on adjusting a focal length to reduce a difference between positions of the first and second registration points. A second surface image of second light is captured. A compensation parameter is determined based at least in part on the first registration image, the second registration image, the first 3D coordinates, the second surface image, and the projected second light.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Martin Ossig, Johannes Buback
  • Publication number: 20220351415
    Abstract: A system includes a three-dimensional (3D) scanner that captures a 3D point cloud corresponding to one or more objects in a surrounding environment. The system further includes a camera that captures a control image by capturing a plurality of images of the surrounding environment, and an auxiliary camera configured to capture an ultrawide-angle image of the surrounding environment. One or more processors of the system colorize the 3D point cloud using the ultrawide-angle image by mapping the ultrawide-angle image to the 3D point cloud. The system performs a limited system calibration before colorizing each 3D point cloud, and a periodic full system calibration before/after a plurality of 3D point clouds are colorized.
    Type: Application
    Filed: February 23, 2022
    Publication date: November 3, 2022
    Inventors: Jafar Amiri Parian, Martin Ossig, Hani Kaabi
  • Patent number: 11481917
    Abstract: A three-dimensional (3D) measuring instrument includes a registration camera and a surface measuring system having a projector and an autofocus camera. For the instrument in a first pose, the registration camera captures a first registration image of first registration points. The autofocus camera captures a first surface image of first light projected onto the object by the projector and determines first 3D coordinates of points on the object. For the instrument in a second pose, the registration camera captures a second registration image of second registration points. The autofocus camera adjusts the autofocus mechanism and captures a second surface image of second light projected by the projector. A compensation parameter is determined based at least in part on the first registration image, the second registration image, the first 3D coordinates, the second surface image, and the projected second light.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: October 25, 2022
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Martin Ossig, Johannes Buback
  • Publication number: 20220236048
    Abstract: A handheld device has a projector that projects a pattern of light onto an object, a first camera that captures the projected pattern of light in first images, a second camera that captures the projected pattern of light in second images, a registration camera that captures a succession of third images, one or more processors that determines three-dimensional (3D) coordinates of points on the object based at least in part on the projected pattern, the first images, and the second images, the one or more processors being further operable to register the determined 3D coordinates based at least in part on common features extracted from the succession of third images, and a mobile computing device operably connected to the handheld device and cooperating with the one or more processors, the mobile computing device operable to display the registered 3D coordinates of points.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Daniel DÖRING, Rolf HEIDEMANN, Martin OSSIG, Gerrit HILLEBRAND
  • Publication number: 20220198065
    Abstract: A method that includes providing a database for storing meta-data that describes steps in a workflow and an order of the steps in the workflow. The meta-data includes, for each of the steps: a reference to an input data file for the step; a description of a transaction performed at the step; and a reference to an output data file generated by the step based at least in part on applying the transaction to the input data file. Data that includes meta-data for a step in the workflow is received and the data is stored in the database. A trace of the workflow is generated based at least in part on contents of the database. The generating is based on receiving a request from a requestor for the trace of the workflow. At least a subset of the trace is output to the requestor.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 23, 2022
    Inventors: Martin Ossig, Oswin Horvath, Daniel Flohr