Patents by Inventor Martin P. Grunthaner

Martin P. Grunthaner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9665200
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 30, 2017
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20170147147
    Abstract: An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 25, 2017
    Inventors: BINGRUI YANG, MARTIN P. GRUNTHANER, STEVEN P. HOTELLING
  • Patent number: 9612377
    Abstract: A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 4, 2017
    Assignee: Apple Inc.
    Inventors: Cheng Chen, Enkhamgalan Dorjgotov, Masato Kuwabara, Wonjae Choi, Martin P. Grunthaner, Albert Lin, John Z. Zhong, Wei Chen, Steven P. Hotelling, Lynn R. Youngs
  • Patent number: 9575588
    Abstract: An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: February 21, 2017
    Assignee: Apple Inc.
    Inventors: Bingrui Yang, Martin P. Grunthaner, Steven P. Hotelling
  • Publication number: 20170046008
    Abstract: The disclosed embodiments relate to forming an area on a touchscreen which electrically isolates a portion of the viewable area of the touchscreen from a capacitive sensor associated with the touchscreen.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 16, 2017
    Inventors: Cheng Chen, Erik A. Uttermann, Kevin D. Gibbs, Manu Agarwal, Martin P. Grunthaner
  • Patent number: 9542028
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 10, 2017
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160378255
    Abstract: A method of calibrating a force sensor that includes an input surface and an array of sensing elements. The input has a number of test locations and is deformable under applied force. The force sensor is mounted in a predetermined test orientation. For each test location of the plurality of test locations on the input surface of the force sensor a predetermined test force to the test location. An element calibration value is measured for each sensing element of the array of sensing elements of the force sensor. An (x, y) deformation map of the input surface of the force sensor corresponding to the application of the predetermined test force to the test location is determined based on the measured element calibration values.
    Type: Application
    Filed: November 26, 2013
    Publication date: December 29, 2016
    Inventors: Christopher J. Butler, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Sinan Filiz
  • Publication number: 20160373563
    Abstract: Accurate and reliable techniques for determining information of an accessory device in relation to an electronic device are described.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Jonathan P. IVE, Duncan R. KERR, Matthew D. ROHRBACH, Steve P. HOTELLING, Christopher T. MULLENS, Martin P. GRUNTHANER, Michael A. CRETELLA, Jr.
  • Publication number: 20160306481
    Abstract: Systems for detecting an amount and/or location of a force applied to a device using a piezoelectric film are provided. One example system can include a transparent piezoelectric film for generating an electric charge in response to a deformation of the film. Electrodes positioned on opposite surfaces of the piezoelectric film can be used to detect the generated electric charge and determine an amount and/or location of force applied to the film based on the generated electric charge. In another embodiment, the system can include a capacitive touch sensor for determining a location of a touch event on the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 20, 2016
    Applicant: APPLE INC.
    Inventors: Sinan Filiz, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner, Shahrooz Shahpamia, Sunggu Kang, Kai Wang
  • Publication number: 20160209972
    Abstract: An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 21, 2016
    Inventors: Bingrui Yang, Martin P. Grunthaner, Steven P. Hotelling
  • Publication number: 20160147352
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160147353
    Abstract: An optically transparent force sensor element is compensated for effects of environment by comparing a force reading from a first force-sensitive component with a second force-sensitive components. The first and second force-sensitive components disposed on opposite sides of a flexible substrate within a display stack.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160139716
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: June 1, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20160139717
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Patent number: 9329314
    Abstract: A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 3, 2016
    Assignee: Apple Inc.
    Inventors: Cheng Chen, Enkhamgalan Dorjgotov, Masato Kuwabara, Wonjae Choi, Martin P. Grunthaner, Albert Lin, John Z. Zhong, Wei Chen, Steven P. Hotelling, Lynn R. Youngs
  • Patent number: 9316677
    Abstract: Methods and devices for testing flex cable shielding of a consumer electronic device are provided. In one example, a method may include applying a signal across a first portion of the flex cable shielding and a second portion of the flex cable shielding. The method may also include detecting a parameter associated with the signal. The method may include determining a health of the flex cable shielding based at least partially on the detected parameter.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Martin P. Grunthaner, Jean-Marie Bussat, Benjamin B. Lyon, Steven P. Hotelling, Albert Lin
  • Publication number: 20160103542
    Abstract: A force-sensitive device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: Charley T. Ogata, Martin P. Grunthaner, Michael B. Wittenberg, Peter W. Richards, Romain A. Teil, Steven P. Hotelling
  • Publication number: 20160103544
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20160103545
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160098131
    Abstract: A force-sensitive device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Application
    Filed: February 6, 2015
    Publication date: April 7, 2016
    Inventors: Charley T. Ogata, Martin P. Grunthaner, Michael B. Wittenberg, Peter W. Richards, Romain A. Teil, Steven P. Hotelling