Patents by Inventor Martin Pieprzyk

Martin Pieprzyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9909179
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 6, 2018
    Assignee: FLUIDIGM CORPORATION
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Patent number: 9623413
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: April 18, 2017
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
  • Publication number: 20160340728
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Application
    Filed: December 21, 2015
    Publication date: November 24, 2016
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Patent number: 9498776
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: November 22, 2016
    Assignee: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Patent number: 9383295
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: July 5, 2016
    Assignee: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Patent number: 9249459
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 2, 2016
    Assignee: Fluidigm Corporation
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Publication number: 20160016164
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Application
    Filed: May 22, 2015
    Publication date: January 21, 2016
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Publication number: 20150185118
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Application
    Filed: September 4, 2014
    Publication date: July 2, 2015
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Patent number: 9039997
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: May 26, 2015
    Assignee: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Publication number: 20140193812
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Application
    Filed: December 10, 2013
    Publication date: July 10, 2014
    Applicant: FLUIDIGM CORPORATION
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Publication number: 20140186827
    Abstract: The present invention provides amplification-based methods for detection of genotype, mutations, and/or aneuploidy. These methods have broad applicability, but are particularly well-suited to detecting and quantifying target nucleic acids in free fetal DNA present in a maternal bodily fluid sample.
    Type: Application
    Filed: May 16, 2011
    Publication date: July 3, 2014
    Applicant: FLUIDIGM, INC.
    Inventors: Martin Pieprzyk, Robert C. Jones, Kenneth J. Livak, Andrew May, Alain Mir, Jian Qin, Ramesh Ramakrishnan, Sandra Spurgeon, Jun Wang, Bernhard G. Zimmermann
  • Publication number: 20140045184
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 13, 2014
    Applicant: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Patent number: 8628923
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: January 14, 2014
    Assignee: Fluidigm Corporation
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Patent number: 8389960
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: March 5, 2013
    Assignee: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Publication number: 20120261007
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 18, 2012
    Applicant: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Publication number: 20120195810
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 2, 2012
    Applicant: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Patent number: 8105824
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
  • Patent number: 8105553
    Abstract: The present invention provides for microfluidic devices and methods for their use. The invention further provides for apparatus and systems for using the microfluidic devices, analyze reactions carried out in the microfluidic devices, and systems to generate, store, organize, and analyze data generated from using the microfluidic devices. The invention further provides methods of using and making microfluidic systems and devices which, in some embodiments, are useful for crystal formation. In one embodiment, an apparatus includes a platen having a platen face with one or more fluid ports therein. The fluid ports spatially correspond to one or more wells on a surface of the microfluidic device.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 31, 2012
    Assignee: Fluidigm Corporation
    Inventors: Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk
  • Patent number: 8058630
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: November 15, 2011
    Assignee: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Publication number: 20110265304
    Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
    Type: Application
    Filed: January 10, 2011
    Publication date: November 3, 2011
    Applicant: Fluidigm Corporation
    Inventors: Geoffrey Facer, Robert Grossman, Marc Unger, Phillip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon