Patents by Inventor Martin PLENIO

Martin PLENIO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940510
    Abstract: A method for preparing an NMR material, comprising generating parahydrogen in gas or liquid form at a first location; transporting the parahydrogen away from the first location; mixing a precursor compound including a metabolite component with a catalyst for hydrogenation; hydrogenating the precursor compound using the parahydrogen; transferring polarization in the precursor compound to a nuclear spin of the metabolite component; cleaving a side arm of the precursor compound in a chemical reaction, with the metabolite molecule being one of the products of the reaction; separating the metabolite molecule from the catalyst for hydrogenation and other products of the reaction; and generating metabolite molecules for use in an MRI scanner by extracting a sample of the metabolite molecule having at least 5% polarization.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 26, 2024
    Assignees: NVision Imaging Technologies Gmbh, Universität Ulm
    Inventors: Ilai Schwartz, Michael Keim, Martin Plenio, Benedikt Tratzmiller
  • Publication number: 20230152399
    Abstract: A method for preparing an NMR material, comprising generating parahydrogen in gas or liquid form at a first location; transporting the parahydrogen away from the first location; mixing a precursor compound including a metabolite component with a catalyst for hydrogenation; hydrogenating the precursor compound using the parahydrogen; transferring polarization in the precursor compound to a nuclear spin of the metabolite component; cleaving a side arm of the precursor compound in a chemical reaction, with the metabolite molecule being one of the products of the reaction; separating the metabolite molecule from the catalyst for hydrogenation and other products of the reaction; and generating metabolite molecules for use in an MRI scanner by extracting a sample of the metabolite molecule having at least 5% polarization.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 18, 2023
    Applicants: NVISION IMAGING TECHNOLOGIES GMBH, UNIVERSITÄT ULM
    Inventors: Ilai SCHWARTZ, Michael KEIM, Martin PLENIO, Benedikt TRATZMILLER
  • Patent number: 11119177
    Abstract: The invention relates to a method for the hyperpolarization of a material sample (4), which hits a number of first spin moments (10) of a first spin moment type, wherein the number of first spin moments (10) is brought into interaction with a second spin moment (16) of a second spin moment type, wherein the first spin moments (10) are nuclear spin moments and the second spin moment (16) is an election spin moment, wherein the first and second spin moments (10, 16) are exposed to a homogeneous magnetic field (B), wherein the second spin moment (16) is polarized along the magnetic field (B), wherein the second spin moment (16) is coherently manipulated by means of a, preferably repeated, sequence (S) having a number of successive high-frequency pulses (Pki, Pk?i) temporally offset to each by durations (Tki, Tk?i, T), in such a way that a polarization transfer from the second spin moment (16) to the first spin moments (10) occurs, and wherein durations (Tki, Tk?i, T) inversely proportional to a Lamor frequency (
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 14, 2021
    Assignee: NVision Imaging Technolgies GmbH
    Inventors: Ilai Schwartz, Martin Plenio, Qiong Chen, Zhenyu Wang
  • Patent number: 10649044
    Abstract: A method of hyperpolarisation of nuclear spins in one or more particle(s) moving relatively to a polarisation structure, wherein a polarisation of electron spins in the polarisation structure is transferred to the nuclear spins in the particle(s), wherein for one or more of the moving particle(s) within 20 nm from a surface of the polarisation structure, the correlation time of the interaction with the nearest polarisation structure electron spin due to the molecular motion is larger than the inverse of the nuclear Larmor frequency; the electron spins in the polarisation structure are polarised above thermal equilibrium; and the polarisation transfer is performed resonantly.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 12, 2020
    Assignee: UNIVERSITÄT ULM
    Inventors: Fedor Jelezko, Martin Plenio, Ilai Schwartz, Qiong Chen, Alex Retzker
  • Publication number: 20190391216
    Abstract: The invention concerns a method for the hyperpolarisation of 13C nuclear spin in a diamond, comprising an optical pumping step, in which colour centre electron spins in the diamond are optically pumped. The method further comprises a transfer step in which the polarisation of a long-lived state of the colour centre electron spins is transferred to 13C nuclear spins in the diamond via a long-range interaction.
    Type: Application
    Filed: May 24, 2019
    Publication date: December 26, 2019
    Applicant: Universitaet Ulm
    Inventors: Fedor JELEZKO, Jianming CAI, Martin PLENIO, Alex RETZKER, Boris NAYDENOV, Ilai SCHWARZ
  • Publication number: 20190346527
    Abstract: The invention relates to a method for the hyperpolarization of a material sample (4), which hits a number of first spin moments (10) of a first spin moment type, wherein the number of first spin moments (10) is brought into interaction with a second spin moment (16) of a second spin moment type, wherein the first spin moments (10) are nuclear spin moments and the second spin moment (16) is an election spin moment, wherein the first and second spin moments (10, 16) are exposed to a homogeneous magnetic field (B), wherein the second spin moment (16) is polarized along the magnetic field (B), wherein the second spin moment (16) is coherently manipulated by means of a, preferably repeated, sequence (S) having a number of successive high-frequency pulses (Pki, Pk?i) temporally offset to each by durations (Tki, Tk?i, T), in such a way that a polarization transfer from the second spin moment (16) to the first spin moments (10) occurs, and wherein durations (Tki, Tk?i, T) inversely proportional to a Lamor frequency (
    Type: Application
    Filed: December 21, 2017
    Publication date: November 14, 2019
    Applicant: NVision Imaging Technologies GmbH
    Inventors: Ilai Schwartz, Martin Plenio, Qiong Chen, Zhenyu Wang
  • Patent number: 10345400
    Abstract: The invention concerns a method for the hyperpolarisation of 13C nuclear spin in a diamond, comprising an optical pumping step, in which colour centre electron spins in the diamond are optically pumped. The method further comprises a transfer step in which the polarisation of a long-lived state of the colour centre electron spins is transferred to 13C nuclear spins in the diamond via a long-range interaction.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: July 9, 2019
    Assignee: UNIVERSITAET ULM
    Inventors: Fedor Jelezko, Jianming Cai, Martin Plenio, Alex Retzker, Boris Naydenov, Ilai Schwarz
  • Patent number: 10107874
    Abstract: A sensor (1, 2, 3, 4, 5, 6, 7, 8) comprising a first diamond substrate (9) with at least one color center (15), the sensor (1, 2, 3, 4, 5, 6, 7, 8) further comprising a first piezomagnetic (10) or piezoelectric primary element (11), which primary element (10, 11) is arranged to interact with the color center(s) (15) of the first diamond substrate (9).
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 23, 2018
    Assignee: Element Six Technologies Limited
    Inventors: Fedor Jelezko, Jianming Cai, Martin Plenio
  • Publication number: 20180149717
    Abstract: A method of hyperpolarisation of nuclear spins in one or more particle(s) moving relatively to a polarisation structure, wherein a polarisation of electron spins in the polarisation structure is transferred to the nuclear spins in the particle(s), wherein for one or more of the moving particle(s) within 20 nm from a surface of the polarisation structure, the correlation time of the interaction with the nearest polarisation structure electron spin due to the molecular motion is larger than the inverse of the nuclear Larmor frequency; the electron spins in the polarisation structure are polarised above thermal equilibrium; and the polarisation transfer is performed resonantly.
    Type: Application
    Filed: May 22, 2015
    Publication date: May 31, 2018
    Inventors: Fedor JELEZKO, Martin PLENIO, Ilai SCHWARTZ, Qiong CHEN, Alex RETZKER
  • Publication number: 20170045591
    Abstract: A sensor (1, 2, 3, 4, 5, 6, 7, 8) comprising a first diamond substrate (9) with at least one colour centre (15), the sensor (1, 2, 3, 4, 5, 6, 7, 8) further comprising a first piezomagnetic (10) or piezoelectric primary element (11), which primary element (10, 11) is arranged to interact with the colour centre(s) (15) of the first diamond substrate (9).
    Type: Application
    Filed: April 16, 2014
    Publication date: February 16, 2017
    Inventors: FEDOR JELEZKO, JIANMING CAI, MARTIN PLENIO
  • Publication number: 20160061914
    Abstract: The invention concerns a method for the hyperpolarisation of 13C nuclear spin in a diamond, comprising an optical pumping step, in which colour centre electron spins in the diamond are optically pumped. The method further comprises a transfer step in which the polarisation of a long-lived state of the colour centre electron spins is transferred to 13C nuclear spins in the diamond via a long-range interaction.
    Type: Application
    Filed: April 7, 2014
    Publication date: March 3, 2016
    Inventors: Fedor JELEZKO, Jianming CAI, Martin PLENIO, Alex RETZKER, Boris NAYDENOV, Ilai SCHWARZ