Patents by Inventor Martin R. Roscheisen

Martin R. Roscheisen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140314958
    Abstract: An inorganic/organic hybrid nanolaminate barrier film has a plurality of layers of an inorganic material that alternate with a plurality of layers of an organic material. Such a barrier film can be fabricated using nanocomposite self-assembly techniques based on sol-gel chemistry.
    Type: Application
    Filed: May 9, 2014
    Publication date: October 23, 2014
    Inventors: Brian M. Sager, Martin R. Roscheisen
  • Patent number: 8722160
    Abstract: An inorganic/organic hybrid nanolaminate barrier film has a plurality of layers of an inorganic material that alternate with a plurality of layers of an organic material. Such a barrier film can be fabricated using nanocomposite self-assembly techniques based on sol-gel chemistry.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: May 13, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: Brian M. Sager, Martin R. Roscheisen
  • Patent number: 8697981
    Abstract: Methods and devices are provided for improved large-scale solar installations. In one embodiment, a photovoltaic module is provided comprising a module front layer comprising a glass plate, a module back layer comprising an electrically conductive foil, and a plurality of solar cells arranged to be protected by the front layer and the back layer. In some embodiments, the module back layer is aluminum foil. The module back layer may have an externally exposed surface. The module back layer may be electrically grounded. An electrically insulating pottant material may be used with the solar cells to separate them from the module back layer. This allows for a high voltage withstand between the cells and the outer surface of the back layer.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 15, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: Paul M. Adriani, Martin R. Roscheisen, Jeremy H. Scholz
  • Patent number: 8525152
    Abstract: Methods and devices are provided for absorber layers formed on foil substrate. In one embodiment, a method of manufacturing photovoltaic devices may be comprised of providing a substrate comprising of at least one electrically conductive aluminum foil substrate, at least one electrically conductive diffusion barrier layer, and at least one electrically conductive electrode layer above the diffusion barrier layer. The diffusion barrier layer may prevent chemical interaction between the aluminum foil substrate and the electrode layer. An absorber layer may be formed on the substrate. In one embodiment, the absorber layer may be a non-silicon absorber layer. In another embodiment, the absorber layer may be an amorphous silicon (doped or undoped) absorber layer. Optionally, the absorber layer may be based on organic and/or inorganic materials.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 3, 2013
    Assignee: Nanosolar, Inc.
    Inventors: Craig Leidholm, Brent Bollman, James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Patent number: 8471141
    Abstract: Improved photovoltaic devices, and more specifically, improved building integrated photovoltaic devices are described herein. In one embodiment, the photovoltaic roofing structure may be comprised of a roofing tile having a top surface, a bottom surface, and a recessed portion; a photovoltaic module sized to fit within the recessed portion of the roofing structure.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 25, 2013
    Assignee: Nanosolar, Inc
    Inventors: Robert Stancel, Martin R. Roscheisen, Brian M. Sager, Paul M. Adriani
  • Publication number: 20130091302
    Abstract: Information may be transferred directly between two mobile electronic devices where each device has a display and a camera on the same side. Data may be converted into one or more images using a processor on a first mobile communication device. The images may be displayed on a display on the first mobile communication device. The images are configured to convey information in a form that is detectable by a camera built into a second mobile communication device and interpretable by computer executable instructions running on a processor coupled to the camera that is built into the second mobile communication device. Images displayed on a display of the second device may be detected with a camera on the first device. The images on the second device's display may be interpreted to convert information encoded within those images into electronic data using the processor on the first device.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 11, 2013
    Inventor: Martin R. Roscheisen
  • Publication number: 20130011958
    Abstract: Photovoltaic devices, such as solar cells, and methods for their manufacture are disclosed. A device may be characterized by an architecture having a nanostructured template made from an n-type first charge transfer material with template elements between about 1 nm and about 500 nm in diameter with about 1012 to 1016 elements/m2. A p-type second charge-transfer material optionally coats the walls of the template elements leaving behind additional space. A p-type third charge-transfer material fills the additional space volumetrically interdigitating with the second charge transfer material.
    Type: Application
    Filed: January 10, 2012
    Publication date: January 10, 2013
    Inventors: Martin R. Roscheisen, Brian M. Sager, Karl Pichler
  • Publication number: 20120291856
    Abstract: Methods and devices are provided for improved roofing devices. In one embodiment of the present invention, a photovoltaic roofing assembly is provided that comprises of a roofing membrane and a plurality of photovoltaic cells supported by the roofing membrane. The photovoltaic cells may be lightweight, flexible cells formed on a lightweight foil and disposed as a layer on top of the roofing membrane. The roofing assembly may include at least one flexible encapsulant film that protects the plurality of photovoltaic cells from environmental exposure damage, wherein the encapsulant film is formed using a non-vacuum process. Optionally, the process may be a lamination process. In other embodiments, the process is a non-vacuum, non-lamination process. The resulting roofing membrane and the photovoltaic cells are constructed to be rolled up in lengths suitable for being transported to a building site for unrolling and being affixed to a roof structure.
    Type: Application
    Filed: April 9, 2012
    Publication date: November 22, 2012
    Inventors: James R. Sheats, Paul Adriani, Philip Capps, Martin R. Roscheisen, Brian M. Sager
  • Patent number: 8309949
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 13, 2012
    Assignee: Nanosolar, Inc.
    Inventors: James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Publication number: 20120237816
    Abstract: A bipolar battery may include a substrate having a matrix made of a thermoset polymer formed from a liquid precursor. One or more conductive pellets can be disposed in the matrix to provide electrical connection between opposite sides of the matrix. Each conductive pellet has a characteristic thickness that is greater than a thickness of the matrix. Each of the one or more conductive pellets protrudes beyond first and second surfaces of the matrix.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: YottaQ, Inc.
    Inventors: Martin R. Roscheisen, Brent J. Bollman, Hak Fei Poon, Zhengyu Wu, Boris Monahov, Sam Kao
  • Patent number: 8257788
    Abstract: Nanostructured layers with 10 nm to 50 nm pores spaced 10-50 nm apart, a method for making such nanostructured layers, optoelectronic devices having such nanostructured layers and uses for such nanostructured layers are disclosed. The nanostructured layer can be formed using precursor sol, which generally includes one or more covalent metal complexes, one or more surfactants, a solvent, one or more optional condensation inhibitors, and (optionally) water. Evaporating the solvent from the precursor sol forms a surfactant-templated film. Covalently crosslinking the surfactant-templated film forms a nanostructured porous layer. Pore size is controlled, e.g., by appropriate solvent concentration, choice of surfactant, use of chelating agents, use of swelling agents or combinations of these.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: September 4, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Jacqueline Fidanza, Brian M. Sager, Martin R. Roscheisen, Dong Yu, Gina J. Gerritzen
  • Patent number: 8198117
    Abstract: Methods and devices are provided for absorber layers formed on foil substrate. In one embodiment, a method of manufacturing photovoltaic devices may be comprised of providing a substrate comprising of at least one electrically conductive aluminum foil substrate, at least one electrically conductive diffusion barrier layer, and at least one electrically conductive electrode layer above the diffusion barrier layer. The diffusion barrier layer may prevent chemical interaction between the aluminum foil substrate and the electrode layer. An absorber layer may be formed on the substrate. In one embodiment, the absorber layer may be a non-silicon absorber layer. In another embodiment, the absorber layer may be an amorphous silicon (doped or undoped) absorber layer. Optionally, the absorber layer may be based on organic and/or inorganic materials.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: June 12, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Craig R. Leidholm, Brent Bollman, James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Patent number: 8178384
    Abstract: An optoelectronic apparatus, a method for making the apparatus, and the use of the apparatus in an optoelectronic device are disclosed. The apparatus may include an active layer having a nanostructured network layer with a network of regularly spaced structures with spaces between neighboring structures. One or more network-filling materials are disposed in the spaces. At least one of the network-filling materials has complementary charge transfer properties with respect to the nanostructured network layer. An interfacial layer, configured to enhance an efficiency of the active layer, is disposed between the nanostructured network layer and the network-filling materials. The interfacial layer may be configured to provide (a) charge transfer between the two materials that exhibits different rates for forward versus backward transport; (b) differential light absorption to extend a range of wavelengths that the active layer can absorb; or (c) enhanced light absorption, which may be coupled with charge injection.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: May 15, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Martin R. Roscheisen, Brian M. Sager, Klaus Petritsch, Jacqueline Fidanza
  • Patent number: 8158450
    Abstract: Methods and devices are provided for improved roofing devices. In one embodiment of the present invention, a photovoltaic roofing assembly is provided that comprises of a roofing membrane and a plurality of photovoltaic cells supported by the roofing membrane. The photovoltaic cells may be lightweight, flexible cells formed on a lightweight foil and disposed as a layer on top of the roofing membrane. The roofing assembly may include at least one flexible encapsulant film that protects the plurality of photovoltaic cells from environmental exposure damage, wherein the encapsulant film is formed using a non-vacuum process. Optionally, the process may be a lamination process. In other embodiments, the process is a non-vacuum, non-lamination process. The resulting roofing membrane and the photovoltaic cells are constructed to be rolled up in lengths suitable for being transported to a building site for unrolling and being affixed to a roof structure.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: April 17, 2012
    Assignee: Nanosolar, Inc.
    Inventors: James R. Sheats, Paul Adriani, Philip Capps, Martin R. Roscheisen, Brian M. Sager
  • Publication number: 20120052613
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Application
    Filed: June 27, 2011
    Publication date: March 1, 2012
    Inventors: James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Patent number: 8093489
    Abstract: Photovoltaic devices, such as solar cells, and methods for their manufacture are disclosed. A device may be characterized by an architecture having a nanostructured template made from an n-type first charge transfer material with template elements between about 1 nm and about 500 nm in diameter with about 1012 to 1016 elements/m2. A p-type second charge-transfer material optionally coats the walls of the template elements leaving behind additional space. A p-type third charge-transfer material fills the additional space volumetrically interdigitating with the second charge transfer material.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 10, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen, Karl Pichler
  • Publication number: 20110284081
    Abstract: The metallic components of a IB-IIIA-VIA photovoltaic cell active layer may be directly coated onto a substrate by using relatively low melting point (e.g., less than about 500° C.) metals such as indium and gallium. Specifically, CI(G)S thin-film solar cells may be fabricated by blending molten group IIIA metals with solid nanoparticles of group IB and (optionally) group IIIA metals. The molten mixture may be coated onto a substrate in the molten state, e.g., using coating techniques such as hot-dipping, hot microgravure and/or air-knife coating. After coating, the substrate may be cooled and the film annealed, e.g., in a sulfur-containing or selenium-containing atmosphere.
    Type: Application
    Filed: September 21, 2009
    Publication date: November 24, 2011
    Inventors: Martin R. Roscheisen, Brian M. Sager
  • Publication number: 20110189815
    Abstract: An absorber layer may be formed on a substrate using atomic layer deposition reactions. An absorber layer containing elements of groups IB, IIIA and VIB may be formed by placing a substrate in a treatment chamber and performing atomic layer deposition of a group IB element and/or one or more group IIIA elements from separate sources onto a substrate to form a film. A group VIA element is then incorporated into the film and annealed to form the absorber layer. The absorber layer may be greater than about 25 nm thick. The substrate may be coiled into one or more coils in such a way that adjacent turns of the coils do not touch one another. The coiled substrate may be placed in a treatment chamber where substantially an entire surface of the one or more coiled substrates may be treated by an atomic layer deposition process.
    Type: Application
    Filed: December 27, 2010
    Publication date: August 4, 2011
    Inventors: Brian M. Sager, Martin R. Roscheisen, Craig Leidholm
  • Patent number: 7968869
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: June 28, 2011
    Assignee: Nanosolar, Inc.
    Inventors: James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Publication number: 20110121353
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Inventors: James R. Sheats, Sam Kao, Martin R. Roscheisen