Patents by Inventor Martin Rossiger

Martin Rossiger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9732396
    Abstract: A method operates a continuous annealing line for the processing of a rolled good, in particular a metal strip. A property of the rolled good in relation to a point or a section of the rolled good is fed to a computer-aided model as an input variable. The point or the section of the rolled good is located before or in the continuous annealing line. For the purpose of precise control of the continuous annealing process, at least one material property of the rolled good after the continuous annealing process is simulated by the computer-aided model and compared with a specified target value. If the simulated material property deviates from the target value, at least one process variable of the continuous annealing process is controlled as long as the point or the section of the rolled good is located before or in the continuous annealing line.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 15, 2017
    Assignee: PRIMETALS TECHNOLOGIES GERMANY GMBH
    Inventors: Martin Rössiger, Günther Winter
  • Patent number: 7248365
    Abstract: The unevennesses of a chuck are measured at various positions and are stored, as discrepancies from an idealized plane, in a databank. The measured discrepancies are used to calculate corrections for the predetermined settings for the focus distance and/or the tilt of the chuck. These corrections are in each case used differently for adjusting the respective exposure of the exposure areas.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 24, 2007
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Schedel, Martin Rössiger
  • Patent number: 6861331
    Abstract: Exposure positions of exposure fields of semiconductor wafers are subsequently corrected individually in order to compensate for processes affecting the locational position of alignment marks and/or oblique measurement structures. Measurement structures are formed preferably in the frame region of product wafers comprising electrical circuits to be formed and their locational positions before and after the effect of the process that has an effect are compared individually for purpose of determining the positional displacement for each relevant exposure field. From this there is determined either directly a “shot”-fine correction value for the individual exposure or at least one nonlinear function for the correction in dependence on the position of the measurement structures on the wafer. The corrections are applied to the exposure fields after alignment to the alignment marks overformed by the process in dependence on their position on the wafer.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 1, 2005
    Assignee: Infineon Technologies AG
    Inventors: Martin Rössiger, Thorsten Schedel, Jens Stäcker
  • Publication number: 20040100625
    Abstract: The unevennesses of a chuck are measured at various positions and are stored, as discrepancies from an idealized plane, in a databank. The measured discrepancies are used to calculate corrections for the predetermined settings for the focus distance and/or the tilt of the chuck. These corrections are in each case used differently for adjusting the respective exposure of the exposure areas.
    Type: Application
    Filed: November 19, 2003
    Publication date: May 27, 2004
    Inventors: Thorsten Schedel, Martin Rossiger
  • Publication number: 20040082085
    Abstract: Exposure positions of exposure fields of semiconductor wafers are subsequently corrected individually in order to compensate for processes affecting the locational position of alignment marks and/or oblique measurement structures. Measurement structures are formed preferably in the frame region of product wafers comprising electrical circuits to be formed and their locational positions before and after the effect of the process that has an effect are compared individually for purpose of determining the positional displacement for each relevant exposure field. From this there is determined either directly a “shot”-fine correction value for the individual exposure or at least one nonlinear function for the correction in dependence on the position of the measurement structures on the wafer. The corrections are applied to the exposure fields after alignment to the alignment marks overformed by the process in dependence on their position on the wafer.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 29, 2004
    Inventors: Martin Rossiger, Thorsten Schedel, Jens Stacker