Patents by Inventor Martin Schönleber

Martin Schönleber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9297645
    Abstract: An apparatus and method for determining a depth of a region having a high aspect ratio that protrudes into a surface of a semiconductor wafer are provided. The apparatus comprises a multi-wavelength light source, a semiconductor wafer holder for holding a semiconductor wafer, a head for directing the light source onto the semiconductor wafer, a spectrometer for collecting light comprising multiple wavelengths reflected from the semiconductor wafer and analysis means for determining a depth of the region from an interference pattern of light reflected from the semiconductor wafer by performing Fourier domain optical coherence tomography.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: March 29, 2016
    Assignee: Precitec Optronik Gmbh
    Inventor: Martin Schönleber
  • Publication number: 20160059350
    Abstract: According to a method for measuring the distance between a workpiece and a machining head of a laser machining apparatus, a machining head is provided, which has a housing that has an interior and an opening for emergence of the laser radiation from the machining head. The laser radiation is directed on to the workpiece, after it has passed through the interior and the opening. An object beam is directed on to the workpiece by a light source of an optical coherence tomograph in such a manner that the object beam passes through the interior and the opening before being incident upon the workpiece. In addition to the object beam, a measuring beam passes through the interior. The measuring beam is used to compensate falsifications of the measured distance that have been caused by pressure fluctuations in the interior. The measuring beam in this case may be reflected at a reflective face that is formed on an inner face of an outlet nozzle that comprises the opening, which inner face delimits the interior.
    Type: Application
    Filed: July 31, 2015
    Publication date: March 3, 2016
    Inventors: Martin Schoenleber, Markus Kogel-Hollacher, Thibault Bautze
  • Patent number: 9230817
    Abstract: Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: January 5, 2016
    Assignee: PRECITEC OPTRONIK GMBH
    Inventors: Martin Schoenleber, Christoph Dietz
  • Publication number: 20150260504
    Abstract: The invention relates to an optical measuring process for acquiring a surface topography of a measurement object. To this end, a measuring device with a measuring head in a measuring head guide device is provided for chromatic confocal acquisition of the surface topography or for spectral interferometric OCT acquisition of the distance to the surface topography. Firstly, spectrally broadband light of a light source from a fibre array with i fibres of i measurement spots is directed onto the measurement object via a common measuring head optic, with formation of a spot array of i measurement spots. i reflection spectra of the i measurement channels are then acquired and digitized. Finally, the digitized reflection spectra are evaluated with removal of time variations of systematic measurement errors and time-related deviation movements of the measuring head guide device.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 17, 2015
    Inventors: Martin Schönleber, Berthold Michelt, Matthias Kunkel
  • Patent number: 8982339
    Abstract: A material-working device with working beams of a beam generator and with in-situ measurement of a working distance between the beam generator and a workpiece, the material-working device including a working laser; a laser scanner for the working laser, the laser scanner including a two-dimensional deflecting device with scanner mirrors and a variable refocusing device at varying working distances; and a sensor device including a spectrometer and at least one sensor light source, wherein measuring beams together scan a working area of the workpiece by the laser scanner and an objective lens while gathering the working distance, and the measuring beams of at least two of the light sources of the sensor device being linearly polarized and being coupled into a working beam path of the laser scanner of the material-working device by an optical coupling element in a collimated state with crossed polarization directions.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: March 17, 2015
    Assignee: Precitec Optronik GmbH
    Inventors: Martin Schönleber, Markus Kogel-Hollacher
  • Publication number: 20140315333
    Abstract: Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.
    Type: Application
    Filed: March 5, 2014
    Publication date: October 23, 2014
    Applicant: Precitec Optronik GmBH
    Inventors: Martin Schoenleber, Christoph Dietz
  • Patent number: 8716039
    Abstract: According to the invention, a monitoring device (12) is created for monitoring a thinning of at least one semiconductor wafer (4) in a wet etching unit (5), wherein the monitoring device (12) comprises a light source (14), which is designed to emit coherent light of a light wave band for which the semiconductor wafer (4) is optically transparent. The monitoring device (12) further comprises a measuring head (13), which is arranged contact-free with respect to a surface of the semiconductor wafer (4) to be etched, wherein the measuring head (13) is designed to irradiate the semiconductor wafer (4) with the coherent light of the light wave band and to receive radiation (16) reflected by the semiconductor wafer (4). Moreover, the monitoring device (12) comprises a spectrometer (17) and a beam splitter, via which the coherent light of the light wave band is directed to the measuring head (13) and the reflected radiation is directed to the spectrometer (17).
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: May 6, 2014
    Assignee: Precitec Optronik GmbH
    Inventors: Claus Dusemund, Martin Schoenleber, Berthold Michelt, Christoph Dietz
  • Patent number: 8699038
    Abstract: Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple, wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 15, 2014
    Assignee: Precitec Optronik GmbH
    Inventors: Martin Schoenleber, Christoph Dietz
  • Publication number: 20130034918
    Abstract: According to the invention, a monitoring device (12) is created for monitoring a thinning of at least one semiconductor wafer (4) in a wet etching unit (5), wherein the monitoring device (12) comprises a light source (14), which is designed to emit coherent light of a light wave band for which the semiconductor wafer (4) is optically transparent. The monitoring device (12) further comprises a measuring head (13), which is arranged contact-free with respect to a surface of the semiconductor wafer (4) to be etched, wherein the measuring head (13) is designed to irradiate the semiconductor wafer (4) with the coherent light of the light wave band and to receive radiation (16) reflected by the semiconductor wafer (4). Moreover, the monitoring device (12) comprises a spectrometer (17) and a beam splitter, via which the coherent light of the light wave band is directed to the measuring head (13) and the reflected radiation is directed to the spectrometer (17).
    Type: Application
    Filed: January 10, 2011
    Publication date: February 7, 2013
    Applicants: DUSEMUND PTE. LTD, PRECITEC OPTRONIC GMBH
    Inventors: Claus Dusemund, Martin Schoenleber, Berthold Michelt, Christoph Dietz
  • Publication number: 20120320380
    Abstract: The invention relates to a test device for testing a bonding layer between wafer-shaped samples and a test process for testing the bonding layer. The test device comprises a measuring head for an OCT process that is configured to direct an optical measuring beam at a composite comprising at least two wafer-shaped samples with a bonding layer positioned between them. An optical beam splitter is configured to divert an optical reference beam as a reference arm for distance measurements. An evaluation unit is configured to evaluate layer thickness measurements without a reference arm and distance measurements with a reference arm. An optical switch device is configured to connect and disconnect the reference arm.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Applicant: PRECITEC OPTRONIK GMBH
    Inventors: Martin Schönleber, Berthold Michelt
  • Publication number: 20120257213
    Abstract: An apparatus and method for determining a depth of a region having a high aspect ratio that protrudes into a surface of a semiconductor wafer are provided. The apparatus comprises a multi-wavelength light source, a semiconductor wafer holder for holding a semiconductor wafer, a head for directing the light source onto the semiconductor wafer, a spectrometer for collecting light comprising multiple wavelengths reflected from the semiconductor wafer and analysis means for determining a depth of the region from an interference pattern of light reflected from the semiconductor wafer by performing Fourier domain optical coherence tomography.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: PRECITEC OPTRONIK GMBH
    Inventor: Martin Schönleber
  • Publication number: 20110261371
    Abstract: Apparatus for monitoring a thickness of a silicon wafer with a highly-doped layer at least at a backside of the silicon wafer is provided. The apparatus has a source configured to emit coherent light of multiple, wavelengths. Moreover, the apparatus comprises a measuring head configured to be contactlessly positioned adjacent the silicon wafer and configured to illuminate at least a portion of the silicon wafer with the coherent light and to receive at least a portion of radiation reflected by the silicon wafer. Additionally, the apparatus comprises a spectrometer, a beam splitter and an evaluation device. The evaluation device is configured to determine a thickness of the silicon wafer by analyzing the radiation reflected by the silicon wafer by an optical coherence tomography process. The coherent light is emitted multiple wavelengths in a bandwidth b around a central wavelength wc.
    Type: Application
    Filed: March 11, 2011
    Publication date: October 27, 2011
    Applicant: PRECITEC OPTRONIK GMBH
    Inventors: Martin Schoenleber, Christoph Dietz