Patents by Inventor Martin Schell

Martin Schell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11838059
    Abstract: An optical assembly for optical signal processing including a first input for coupling in a first light signal; a second input for coupling in a second light signal; a first beam splitter for splitting the first light signal into a first part and a second part; a second beam splitter for splitting the second light signal into a first part and a second part; a superposing unit; a detector; an electronic signal processing unit; at least one actuating unit; and a delay line for generating a delay of the running time of the first part of the first light signal and of the first part of the second light signal up to the superposing unit. The delay line is configured such that the first part of the first light signal and the first part of the second light signal pass through the delay line in opposite directions.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: December 5, 2023
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
    Inventors: Bernd Sartorius, Patrick Runge, Martin Schell
  • Publication number: 20220231767
    Abstract: An optical assembly for optical signal processing: including a first input for coupling in a first light signal; a second input for coupling in a second light signal; a first beam splitter for splitting the first light signal into a first part and a second part; a second beam splitter for splitting the second light signal into a first part and a second part; a superposing unit; a detector; an electronic signal processing unit; at least one actuating unit; and a delay line for generating a delay of the running time of the first part of the first light signal and of the first part of the second light signal up to the superposing unit. The delay line is configured such that the first part of the first light signal and the first part of the second light signal pass through the delay line in opposite directions.
    Type: Application
    Filed: April 30, 2020
    Publication date: July 21, 2022
    Inventors: Bernd Sartorius, Patrick Runge, Martin Schell
  • Patent number: 11281016
    Abstract: A modulator assembly for modulating light comprising a first and a second electro-absorption modulator which each at least substantially only act on a polarization component of incident light; a light generating assembly for generating light which includes a first and a second polarization component; a first electro-absorption modulator for modulating the light generated by the light generating assembly, wherein the first electro-absorption modulator at least substantially only modulates the first polarization component of the light, so that the light exiting from the first electro-absorption modulator includes a modulated and an unmodulated polarization component; a polarization converter for changing the polarization direction of the light exiting from the first electro-absorption modulator.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: March 22, 2022
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Moritz Baier, Martin Schell, Francisco Soares
  • Publication number: 20200073137
    Abstract: A modulator assembly for modulating light comprising a first and a second electro-absorption modulator which each at least substantially only act on a polarization component of incident light; a light generating assembly for generating light which includes a first and a second polarization component; a first electro-absorption modulator for modulating the light generated by the light generating assembly, wherein the first electro-absorption modulator at least substantially only modulates the first polarization component of the light, so that the light exiting from the first electro-absorption modulator includes a modulated and an unmodulated polarization component; a polarization converter for changing the polarization direction of the light exiting from the first electro-absorption modulator.
    Type: Application
    Filed: December 11, 2017
    Publication date: March 5, 2020
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Moritz BAIER, Martin SCHELL, Francisco SOARES
  • Patent number: 10436980
    Abstract: It is provided a circuit assembly, comprising at least one electronic circuit; at least one optical waveguide, wherein the core and the cladding of the optical waveguide are formed of an amorphous material; at least one carrier on which the optical waveguide is arranged; and at least one electro-optically active material layer electrically connected to the electronic circuit. The at least one electro-optically active material layer at least partially extends in the optical waveguide and the electrical connection between the electronic circuit and the at least one electro-optically active material layer is produced in that at least one electrical contact extends from the electronic circuit through at least one section of the cladding of the optical waveguide to the at least one electro-optically active material layer or is connected to a section of the electro-optically active material layer, which protrudes from the cladding of the optical waveguide.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 8, 2019
    Assignee: FRAUNHOFER-GESELLSCHAF T ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Moritz Kleinert, Martin Schell
  • Patent number: 10288480
    Abstract: An optical filter for an optical data transmission system, including a substrate; a first and a second reflective structure which are spaced apart from each other such that they form a Fabry-Perot cavity, and at least one optical waveguide formed on or in the substrate, via which light can be coupled into the Fabry-Perot cavity and/or out of the Fabry-Perot cavity. The Fabry-Perot cavity formed by the first and the second reflective structure at least partly is a free-beam cavity, and the waveguide is an integrated waveguide which is formed by one or more layers arranged on the substrate, and the first and the second reflective structure are at least partly arranged in a cutout of the substrate or adjoin the cutout.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 14, 2019
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Martin Schell, Magnus Happach
  • Publication number: 20190094461
    Abstract: It is provided a circuit assembly, comprising at least one electronic circuit; at least one optical waveguide, wherein the core and the cladding of the optical waveguide are formed of an amorphous material; at least one carrier on which the optical waveguide is arranged; and at least one electro-optically active material layer electrically connected to the electronic circuit. The at least one electro-optically active material layer at least partially extends in the optical waveguide and the electrical connection between the electronic circuit and the at least one electro-optically active material layer is produced in that at least one electrical contact extends from the electronic circuit through at least one section of the cladding of the optical waveguide to the at least one electro-optically active material layer or is connected to a section of the electro-optically active material layer, which protrudes from the cladding of the optical waveguide.
    Type: Application
    Filed: February 21, 2017
    Publication date: March 28, 2019
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Moritz KLEINERT, Martin SCHELL
  • Publication number: 20190052054
    Abstract: A laser arrangement includes a laser having a laser cavity, at least one cavity external to the laser, which reflects one part of the light emitted by the laser back into the laser cavity, and a voltage measuring device for measuring a voltage on an active section of the laser. By means of the measured voltage a detuning of the emission wavelength of the laser and/or a property of a material adjacent to the external cavity can be determined. The external cavity includes an optical waveguide coupled to the laser.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 14, 2019
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Magnus HAPPACH, David DE FELIPE MESQUIDA, Martin SCHELL, Norbert KEIL
  • Publication number: 20180172513
    Abstract: An optical filter for an optical data transmission system, including a substrate; a first and a second reflective structure which are spaced apart from each other such that they form a Fabry-Perot cavity, and at least one optical waveguide formed on or in the substrate, via which light can be coupled into the Fabry-Perot cavity and/or out of the Fabry-Perot cavity. The Fabry-Perot cavity formed by the first and the second reflective structure at least partly is a free-beam cavity, and the waveguide is an integrated waveguide which is formed by one or more layers arranged on the substrate, and the first and the second reflective structure are at least partly arranged in a cutout of the substrate or adjoin the cutout.
    Type: Application
    Filed: June 1, 2016
    Publication date: June 21, 2018
    Inventors: Martin Schell, Magnus Happach
  • Patent number: 9753354
    Abstract: An analog-digital converter has an optical input stage configured to convert an analog input signal (S(t)) into a phase-modulated optical signal and to supply it to a hybrid coupler having a plurality of output waveguides, each being connected to at least one photodiode. The photodiodes are each connected to the input of an associated analog-digital converter via which an analog electrical input signal is convertible into a digital output signal. An output stage is configured to form the digital data stream at the output from the digital output signals of the analog-digital converter, and the output stage may be configured to select the output signal of the analog-digital converter which lies within a predefinable range of the amplitude and has a predefinable slope and/or is larger than a predefinable adjacent output signal.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: September 5, 2017
    Assignee: Fraunhofer Gesellschaft Zur Forderung Der Angew. Forschung E.V.
    Inventor: Martin Schell
  • Publication number: 20160282703
    Abstract: An analog-digital converter has an optical input stage configured to convert an analog input signal (S(t)) into a phase-modulated optical signal and to supply it to a hybrid coupler having a plurality of output waveguides, each being connected to at least one photodiode. The photodiodes are each connected to the input of an associated analog-digital converter via which an analog electrical input signal is convertible into a digital output signal. An output stage is configured to form the digital data stream at the output from the digital output signals of the analog-digital converter, and the output stage may be configured to select the output signal of the analog-digital converter which lies within a predefinable range of the amplitude and has a predefinable slope and/or is larger than a predefinable adjacent output signal.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 29, 2016
    Inventor: Martin SCHELL
  • Patent number: 8995495
    Abstract: A tunable DBR laser including: an amplifier section, a part-reflecting optical output, a connection section connected to the amplifier section, and at least two wavelength-selective reflectors optically coupled to the amplifier section via the connection section. The connection section includes at least one MMI coupler and several waveguides, so that different optical paths lead from the amplifier section to the wavelength-selective reflectors and each of the different optical paths leads through the at least one MMI coupler and through one of the waveguides. The wavelength-selective reflectors differ from one another by having different reflection spectra and each of the wavelength-selective reflectors is connected to one of several outputs of the at least one MMI coupler. By activating a phase shifter, arranged in a course of at least one of the waveguides, the DBR laser can be switched between different resonators.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 31, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V.
    Inventors: Martin Schell, Patrick Runge
  • Patent number: 8971726
    Abstract: A network element has at least one input, to which an optical signal can be fed, and at least one output, which is equipped to emit an optical signal; a first coupler having an input linked to the network element input and a first and a second output; an optical receiver having at least one input coupled to the second output of the first coupler and at least one output; an optical sender having at least one input of which is linked to the output of the optical receiver; a signal processing device being arranged in the signal path; a second coupler having a first input linked to the first output of the first coupler, a second input linked to the output of the optical sender, and an output which is linked to the first output of the network element.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: March 3, 2015
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Martin Schell, Philipp Vorreau
  • Publication number: 20150023382
    Abstract: A tunable DBR laser including: an amplifier section, a part-reflecting optical output, a connection section connected to the amplifier section, and at least two wavelength-selective reflectors optically coupled to the amplifier section via the connection section. The connection section includes at least one MMI coupler and several waveguides, so that different optical paths lead from the amplifier section to the wavelength-selective reflectors and each of the different optical paths leads through the at least one MMI coupler and through one of the waveguides. The wavelength-selective reflectors differ from one another by having different reflection spectra and each of the wavelength-selective reflectors is connected to one of several outputs of the at least one MMI coupler. By activating a phase shifter, arranged in a course of at least one of the waveguides, the DBR laser can be switched between different resonators.
    Type: Application
    Filed: December 10, 2012
    Publication date: January 22, 2015
    Inventors: Martin Schell, Patrick Runge
  • Patent number: 8478093
    Abstract: A multimode interference coupler includes at least one supply waveguide and at least one output waveguide, wherein the coupler has along its longitudinal extent in the direction of the supply waveguide at least one longitudinal section in which the refractive index has a locally oscillating profile in a direction running substantially at right angles to the direction of the supply waveguide. A method for the structural configuration of such a multimode interference coupler.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 2, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Reinhard Kunkel, Martin Schell, Inigo Molina-Fernandez, Gonzalo Wangümert Perez, Alejandro Ortega Monux
  • Publication number: 20130022361
    Abstract: A network element has at least one input, to which an optical signal can be fed, and at least one output, which is equipped to emit an optical signal; a first coupler having an input linked to the network element input and a first and a second output; an optical receiver having at least one input coupled to the second output of the first coupler and at least one output; an optical sender having at least one input of which is linked to the output of the optical receiver; a signal processing device being arranged in the signal path; a second coupler having a first input linked to the first output of the first coupler, a second input linked to the output of the optical sender, and an output which is linked to the first output of the network element.
    Type: Application
    Filed: January 10, 2011
    Publication date: January 24, 2013
    Inventors: Martin Schell, Philipp Vorreau
  • Patent number: 8295656
    Abstract: The invention relates to a method and to an apparatus for compensating the polarization-dependent shift of the center frequency in an optical filter comprising an interferometer by way of compensating the birefringence in at least one waveguide of the interferometer, wherein at least one half-wave plate is arranged into the optical path of the interferometer and at least a section of the waveguide (16, 17) on the right and on the left of the half-wave plate (11) is brought to a pre-selectable temperature, and wherein at least one section on the right of the half-wave plate (11) is brought to a first temperature T1, and at least one section on the left of the half-wave plate (11) is brought to a second temperature T2.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 23, 2012
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Martin Schell, Norbert Keil, Huihai Yao, Crispin Zawadzki
  • Publication number: 20110164847
    Abstract: A multimode interference coupler includes at least one supply waveguide and at least one output waveguide, wherein the coupler has along its longitudinal extent in the direction of the supply waveguide at least one longitudinal section in which the refractive index has a locally oscillating profile in a direction running substantially at right angles to the direction of the supply waveguide. A method for the structural configuration of such a multimode interference coupler.
    Type: Application
    Filed: August 28, 2009
    Publication date: July 7, 2011
    Inventors: Reinhard Kunkel, Martin Schell, Inigo Molina-Fernandez, Gonzalo Wangüemert Perez, Alejandro Ortega Monux
  • Publication number: 20100209039
    Abstract: The invention relates to a method and to an apparatus for compensating the polarization-dependent shift of the center frequency in an optical filter comprising an interferometer by way of compensating the birefringence in at least one waveguide of the interferometer, wherein at least one half-wave plate is arranged into the optical path of the interferometer and at least a section of the waveguide (16, 17) on the right and on the left of the half-wave plate (11) is brought to a pre-selectable temperature, and wherein at least one section on the right of the half-wave plate (11) is brought to a first temperature T1, and at least one section on the left of the half-wave plate (11) is brought to a second temperature T2.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 19, 2010
    Inventors: Martin Schell, Norbert Keil, Huihai Yao, Crispin Zawadzki
  • Patent number: 5794045
    Abstract: A device for creating and analyzing larger symbolic representations without the limitations imposed by available resources of previous devices is disclosed. More specifically, a debugger for debugging a symbolic representation of a program is disclosed. The debugger comprising means for inputting a set of characteristics, means for linking the set of characteristics to the symbolic representation, means for identifying a first portion of the symbolic representation mutually exclusive from the set of characteristics, and means for analyzing a second portion of the symbolic representation for the set of characteristics wherein the second portion being mutually exclusive from the first portion. A method of debugging programs using the debugger, in addition to the resultant debugged program, is also disclosed.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: August 11, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: William Martin Schell, Kanwar Jit Singh, Guy Ashley Story, Pasupathi Ananta Subrahmanyam