Patents by Inventor Martin Schrems

Martin Schrems has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11888010
    Abstract: The system-on-chip camera comprises a semiconductor body with an integrated circuit, a sensor substrate, sensor elements arranged in the sensor substrate according to an array of pixels, a light sensor in the sensor substrate apart from the sensor elements, and a lens or an array of lenses on a surface of incidence. Filter elements, which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: January 30, 2024
    Assignee: AMS AG
    Inventors: Martin Schrems, Thomas Stockmeier
  • Publication number: 20230371760
    Abstract: An air-flow apparatus for treating air and drying an object has a housing with an interior space, into which the object to be dried can be introduced via an opening of a partially opened lid of the housing, and with a bottom opposite the lid. A pump is connected on its inlet side to the interior space in such a way that, by means of a pumping action of the pump, a negative pressure is generated in the interior space and an air flow directed from the opening into the interior space is generated for drying the object. A flow arrangement has a controllable overpressure generating device, an inflow pipe and at least one nozzle, the overpressure generating device being connected on its outlet side to the interior space via the inflow pipe and the at least one nozzle and being adapted to form an overpressure in the inflow pipe and to generate a second air flow directed into the interior space via the at least one nozzle for drying the object.
    Type: Application
    Filed: June 10, 2021
    Publication date: November 23, 2023
    Inventor: Martin Schrems
  • Publication number: 20230092954
    Abstract: A method includes forming a layer stack with at least one electrically insulating layer structure and at least one patterned electrically conductive layer structure on a temporary carrier, the layer stack includes a lower surface adjoining the temporary carrier and an upper surface opposite to the lower surface; mounting a first component at the upper surface; placing a first frame structure at the upper surface, the first frame structure surrounding at least partially the first component; covering the first component with a first coating material, the first coating material spatially extending at least partially into voids at or within the first frame structure and into voids at or within the layer stack; and removing the temporary carrier. The lower surface of the layer stack is an even surface. The opposite upper surface of the layer stack is an uneven surface. An electronic package can be manufactured with the described method.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 23, 2023
    Inventors: Markus LEITGEB, Martin SCHREMS
  • Publication number: 20220328551
    Abstract: The system-on-chip camera comprises a semiconductor body with an integrated circuit, a sensor substrate, sensor elements arranged in the sensor substrate according to an array of pixels, a light sensor in the sensor substrate apart from the sensor elements, and a lens or an array of lenses on a surface of incidence. Filter elements, which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: ams AG
    Inventors: Martin SCHREMS, Thomas STOCKMEIER
  • Patent number: 11452199
    Abstract: An electronic device including a first component carrier, a second component carrier connected with the first component carrier so that a thermal decoupling gap is formed between the first component carrier and the second component carrier, a first component on and/or in the second component carrier, and a second component having a first main surface mounted in the thermal decoupling gap so that at least part of an opposing second main surface and an entire sidewall of the second component is exposed with respect to material of the first component carrier and with respect to material of the second component carrier.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 20, 2022
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventors: Martin Schrems, Markus Leitgeb, Steve Anderson
  • Patent number: 11411035
    Abstract: The system-on-chip camera comprises a semiconductor body (1) with an integrated circuit (40), a sensor substrate (2), sensor elements (3) arranged in the sensor substrate according to an array of pixels, a light sensor (4) in the sensor substrate apart from the sensor elements, and a lens or an array of lenses (15) on a surface of incidence (30). Filter elements (11, 12, 13), which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 9, 2022
    Assignee: AMS AG
    Inventors: Martin Schrems, Thomas Stockmeier
  • Publication number: 20220221363
    Abstract: In an embodiment a method for forming a pressure sensor device includes providing a pressure sensor on a substrate body, the pressure sensor comprising a membrane, depositing a top layer on top of the substrate body and the pressure sensor, connecting a cap body with the top layer, a mass of the cap body being approximately equal to a mass of the substrate body and introducing at least one opening in the cap body.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Inventors: Jörg Siegert, Willem Frederik Adrianus Besling, Coenraad Cornelis Tak, Martin Schrems, Franz Schrank
  • Patent number: 11313749
    Abstract: In an embodiment a pressure sensor device includes a substrate body, a pressure sensor having a membrane and a cap body having at least one opening, wherein the pressure sensor is arranged between the substrate body and the cap body in a vertical direction which is perpendicular to a main plane of extension of the substrate body, and wherein the mass of the substrate body amounts to at least 80% of the mass of the cap body and at most 120% of the mass of the cap body.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: April 26, 2022
    Assignee: SCIOSENSE B.V.
    Inventors: Joerg Siegert, Willem Frederik Adrianus Besling, Coenraad Cornelis Tak, Martin Schrems, Franz Schrank
  • Patent number: 11271134
    Abstract: A method for manufacturing an optical sensor is provided. The method comprises providing an optical sensor arrangement which comprises at least two optical sensor elements on a carrier, where the optical sensor arrangement comprises a light entrance surface at the side of the optical sensor elements facing away from the carrier. The method further comprises forming a trench between two optical sensor elements in a vertical direction which is perpendicular to the main plane of extension of the carrier, where the trench extends from the light entrance surface of the sensor arrangement at least to the carrier. Moreover, the method comprises coating the trench with an opaque material, forming electrical contacts for the at least two optical sensor elements on a back side of the carrier facing away from the optical sensor elements, and forming at least one optical sensor by dicing the optical sensor arrangement along the trench.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 8, 2022
    Assignee: AMS AG
    Inventors: Gregor Toschkoff, Thomas Bodner, Franz Schrank, Miklos Labodi, Joerg Siegert, Martin Schrems
  • Patent number: 11201119
    Abstract: A component carrier including i) an electronic component embedded in the component carrier, ii) an antenna structure arranged at a region of a first main surface of the component carrier, iii) a shielding structure made of an electrically conductive material and configured for shielding electromagnetic radiation from propagating between the antenna structure and the electronic component. Hereby, the shielding structure is arranged at least partially between the antenna structure and the electronic component. Furthermore, the component carrier includes an electrically conductive structure to electrically connect the electronic component and the antenna structure through the shielding structure. The shielding structure is non-perforated at least in a plane between the antenna structure and the electronic component.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: December 14, 2021
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventors: Markus Leitgeb, Martin Schrems, Erich Schlaffer, Steve Anderson
  • Publication number: 20210084747
    Abstract: An electronic device including a first component carrier, a second component carrier connected with the first component carrier so that a thermal decoupling gap is formed between the first component carrier and the second component carrier, a first component on and/or in the second component carrier, and a second component having a first main surface mounted in the thermal decoupling gap so that at least part of an opposing second main surface and an entire sidewall of the second component is exposed with respect to material of the first component carrier and with respect to material of the second component carrier.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Martin Schrems, Markus Leitgeb, Steve Anderson
  • Publication number: 20200313031
    Abstract: A method for manufacturing an optical sensor is provided. The method comprises providing an optical sensor arrangement which comprises at least two optical sensor elements on a carrier, where the optical sensor arrangement comprises a light entrance surface at the side of the optical sensor elements facing away from the carrier. The method further comprises forming a trench between two optical sensor elements in a vertical direction which is perpendicular to the main plane of extension of the carrier, where the trench extends from the light entrance surface of the sensor arrangement at least to the carrier. Moreover, the method comprises coating the trench with an opaque material, forming electrical contacts for the at least two optical sensor elements on a back side of the carrier facing away from the optical sensor elements, and forming at least one optical sensor by dicing the optical sensor arrangement along the trench.
    Type: Application
    Filed: October 15, 2018
    Publication date: October 1, 2020
    Inventors: Gregor TOSCHKOFF, Thomas BODNER, Franz SCHRANK, Miklos LABODI, Joerg SIEGERT, Martin SCHREMS
  • Patent number: 10790234
    Abstract: A method of manufacturing a component carrier includes providing a known-good layer stack comprising an already formed electrically conductive connection structure and a known-good cavity, and mounting a known-good component on the already formed electrically conductive connection structure in the cavity.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 29, 2020
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventors: Marco Gavagnin, Markus Leitgeb, Martin Schrems, Roland Winkler, Steve Anderson
  • Publication number: 20190378801
    Abstract: A component carrier including i) an electronic component embedded in the component carrier, ii) an antenna structure arranged at a region of a first main surface of the component carrier, iii) a shielding structure made of an electrically conductive material and configured for shielding electromagnetic radiation from propagating between the antenna structure and the electronic component. Hereby, the shielding structure is arranged at least partially between the antenna structure and the electronic component. Furthermore, the component carrier includes an electrically conductive structure to electrically connect the electronic component and the antenna structure through the shielding structure. The shielding structure is non-perforated at least in a plane between the antenna structure and the electronic component.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 12, 2019
    Inventors: Markus Leitgeb, Martin Schrems, Erich Schlaffer, Steve Anderson
  • Publication number: 20190312076
    Abstract: The system-on-chip camera comprises a semiconductor body (1) with an integrated circuit (40), a sensor substrate (2), sensor elements (3) arranged in the sensor substrate according to an array of pixels, a light sensor (4) in the sensor substrate apart from the sensor elements, and a lens or an array of lenses (15) on a surface of incidence (30). Filter elements (11, 12, 13), which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Application
    Filed: June 13, 2017
    Publication date: October 10, 2019
    Inventors: Martin SCHREMS, Thomas STOCKMEIER
  • Publication number: 20190265119
    Abstract: A pressure sensor device comprises a substrate body, a pressure sensor comprising a membrane, and a cap body comprising at least one opening. The pressure sensor is arranged between the substrate body and the cap body in a vertical direction which is perpendicular to the main plane of extension of the substrate body, and the mass of the substrate body equals approximately the mass of the cap body. Furthermore, a method for forming a pressure sensor device is provided.
    Type: Application
    Filed: October 2, 2017
    Publication date: August 29, 2019
    Inventors: Joerg Siegert, Willem Frederik Adrianus Besling, Coenraad Cornelis Tak, Martin SCHREMS, FRANZ SCHRANK
  • Patent number: 10374114
    Abstract: The lateral single-photon avalanche diode comprises a semiconductor body comprising a semiconductor material of a first type of electric conductivity, a trench in the semiconductor body, and anode and cathode terminals. A junction region of the first type of electric conductivity is located near the sidewall of the trench, and the electric conductivity is higher in the junction region than at a farther distance from the sidewall. A semiconductor layer of an opposite second type of electric conductivity is arranged at the sidewall of the trench adjacent to the junction region. The anode and cathode terminals are electrically connected with the semiconductor layer and with the junction region, respectively. The junction region may be formed by a sidewall implantation.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 6, 2019
    Assignee: ams AG
    Inventors: Jordi Teva, Frederic Roger, Ewald Stueckler, Stefan Jessenig, Rainer Minixhofer, Ewald Wachmann, Martin Schrems, Guenther Koppitsch
  • Publication number: 20190237500
    Abstract: A 3D-Integrated optical sensor comprises a semiconductor substrate, an integrated circuit, a wiring, a filter layer, a transparent spacer layer, and an on-chip diffuser. The semiconductor substrate has a main surface. The integrated circuit comprises at least one light sensitive area and is arranged in the substrate at or near the main surface. The wiring provides an electrical connection to the integrated circuit and is connected to the integrated circuit. The wiring is arranged on or in the semiconductor substrate. The filter layer has a direction dependent transmission characteristic and is arranged on the integrated circuit. In fact, the filter layer at least covers the light sensitive area. The transparent spacer layer is arranged on the main surface and, at least partly, encloses the filter layer. A spacer thickness is arranged to limit a spectral shift of the filter layer. The on-chip diffuser is arranged on the transparent spacer layer.
    Type: Application
    Filed: June 2, 2017
    Publication date: August 1, 2019
    Inventors: Hubert Enichlmair, Martin SCHREMS, Gregor Toschkoff, Thomas Bodner, Mario Manninger
  • Patent number: 10340254
    Abstract: The method of producing an interposer-chip-arrangement, comprises providing an interposer (1) with an integrated circuit (25), arranging a dielectric layer (2) with metal layers embedded in the dielectric layer above a main surface (10) of the interposer, connecting the integrated circuit with at least one of the metal layers, forming an interconnection (7) through the interposer, the interconnection contacting one of the metal layers, arranging a further dielectric layer (3) above a further main surface (11) of the interposer opposite the main surface and arranging a further metal layer in or on the further dielectric layer, the further metal layer being connected with the interconnection, arranging a chip provided with at least one contact pad at the main surface or at the further main surface, and electrically conductively connecting the contact pad with the interconnection.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: July 2, 2019
    Assignee: ams AG
    Inventors: Jochen Kraft, Martin Schrems, Franz Schrank
  • Publication number: 20190148304
    Abstract: A method of manufacturing a component carrier includes providing a known-good layer stack comprising an already formed electrically conductive connection structure and a known-good cavity, and mounting a known-good component on the already formed electrically conductive connection structure in the cavity.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 16, 2019
    Inventors: Marco Gavagnin, Markus Leitgeb, Martin Schrems, Roland Winkler, Steve Anderson