Patents by Inventor Martin Schubert

Martin Schubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250061669
    Abstract: In one embodiment, a method includes generating a visual interaction tool that moves and extends in a three-dimensional artificial-reality environment according to hand and arm movements of a user. It may be detected that the visual interaction tool intersects a predefined region associated with a virtual item of a first type in the AR environment. The visual interaction tool may attach to the first virtual item. A first operating mode for the visual interaction tool may be selected based on the first type of the first virtual item. The first operating mode may be selected from multiple operating modes for the visual interaction tool. A first input from the user may be received while the visual interaction tool is attached to the first virtual item. First operations with the first virtual item may be performed according to the first operating mode and the first input.
    Type: Application
    Filed: November 5, 2024
    Publication date: February 20, 2025
    Inventor: Martin Schubert
  • Publication number: 20250051665
    Abstract: A method for producing one or more hydrocarbons, includes subjecting a first feed stream to a steam cracking to obtain a first product stream and subjecting a second feed stream containing ethane to an oxidative dehydrogenation to obtain a second product stream At least a portion of the first product stream is subjected to a treatment to obtain hydrocarbon fractions. The treatment includes a selective hydrogenation of hydrocarbons having two carbon atoms and a demethanization. At least a portion of the second product stream is subjected to a trace removal, which comprises the removal of oxygen and/or acetylene, to obtain an subsequent stream. At least a portion of the subsequent stream is fed to the treatment at a position downstream of the selective hydrogenation and upstream of the demethanization. A portion of the subsequent stream is subjected to a carbon dioxide removal upstream of the feed point into the treatment.
    Type: Application
    Filed: December 8, 2022
    Publication date: February 13, 2025
    Inventors: Gunther Kracker, Mathieu Zellhuber, Sean McCracken, Andreas Meiswinkel, Martin Schubert, Desislava Tota
  • Publication number: 20250043098
    Abstract: A PET recycling (the reprocessing of polyethylene terephthalate wastes) has already been practised for many decades in a variety of different ways, since PET is available in large quantities. Environmental protection and sustainability in resource utilization, however, call for ever higher recycling rates in the decades to come. If the concept of a circular economy is to be achieved, this rate must ultimately amount, sooner or later, to 100%.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 6, 2025
    Applicants: Uhde Inventa-Fischer GmbH, thyssenkrupp AG
    Inventors: Matthias SCHOENNAGEL, Christopher HESS, Martin HITTORFF, Michael SCHUBERT, Alexander PAWELSKI, Heinrich KOCH
  • Patent number: 12169665
    Abstract: In some embodiments, a method for creating a design for a physical device is provided. A computing system receives a design specification. The computing system generates a proposed design based on the design specification. The computing system determines a vector of loss values based on the proposed design. The computing system determines a scalar loss value based on a distance between the vector of loss values and a volume representing desired characteristics of the physical device. The computing system updates the proposed design based on the scalar loss value.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: December 17, 2024
    Assignee: X Development LLC
    Inventor: Martin Schubert
  • Patent number: 12147739
    Abstract: In some embodiments, a computer-implemented method for creating a fabricable segmented design for a physical device is provided. A computing system receives a design specification. The computing system generates a proposed segmented design based on the design specification. The computing system determines two or more loss values based on the proposed segmented design. The computing system combines the two or more loss values to create a combined loss value. The computing system creates an updated design specification using the combined loss value. The generating, determining, combining, and creating actions are repeated until a fabricable segmented design is generated.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: November 19, 2024
    Assignee: X Development LLC
    Inventors: Brian Adolf, Martin Schubert, Jesse Lu
  • Patent number: 12136175
    Abstract: In one embodiment, a method includes generating a visual interaction tool that moves and extends in a three-dimensional artificial-reality environment according to hand and arm movements of a user. It may be detected that the visual interaction tool intersects a predefined region associated with a virtual item of a first type in the AR environment. The visual interaction tool may attach to the first virtual item. A first operating mode for the visual interaction tool may be selected based on the first type of the first virtual item. The first operating mode may be selected from multiple operating modes for the visual interaction tool. A first input from the user may be received while the visual interaction tool is attached to the first virtual item. First operations with the first virtual item may be performed according to the first operating mode and the first input.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: November 5, 2024
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventor: Martin Schubert
  • Publication number: 20240317667
    Abstract: The present invention proposes coupling an oxidative dehydrogenation with a vinyl acetate synthesis, wherein the vinyl acetate synthesis is fed with ethylene and acetic acid from the oxidative dehydrogenation. A common carbon dioxide removal is provided.
    Type: Application
    Filed: July 6, 2022
    Publication date: September 26, 2024
    Inventors: Ricardo Bermejo De Val, Martin Schubert, Andreas Meiswinkel, Ernst Haidegger
  • Publication number: 20240294447
    Abstract: A method for producing a target compound includes distributing a feed mixture containing ethane to multiple reaction tubes of a shell-and-tube reactor arranged in parallel, and subjecting to an oxidative catalytic conversion of the ethane in the reaction tubes. The catalytic reaction is carried out by means of catalysis zones with different activity arranged in series in the reaction tubes. One or more catalytically active materials and one or more catalytically inactive materials are provided in each of the catalysis zones. The different activity of the catalysis zones is effected by providing the one or more catalytically active materials having identical or essentially identical basic formulation, wherein the one or more catalytically active materials is or are prepared using different calcination intensities.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 5, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Wolfgang Muller, Gerhard Mestl, Klaus Wanninger, Peter Scheck
  • Publication number: 20240244482
    Abstract: Methods and related devices for performing congestion control in a decentralized way are provided, particularly for controlling interference among autonomous wireless communication links, such as sidelink communication. According to embodiments of the present disclosure, methods for performing congestion control comprise sending a cooperation message that includes a measured total interference and a cooperation mode indicator. Based on this cooperation message, other devices may voluntarily decide to join a coalition for perform congestion control.
    Type: Application
    Filed: March 29, 2024
    Publication date: July 18, 2024
    Inventors: Martin Schubert, Ramya Panthangi Manjunath, Chan Zhou, Wen Xu
  • Publication number: 20240212302
    Abstract: Aspects of the present disclosure are directed to simulating weight for a virtual object in artificial reality. Implementations of a weight simulator can simulate weight for a virtual object during interactions with a user in an artificial reality environment. For example, when a user picks up a virtual object with simulated weight, a spring dynamics model may take, as input, the user movement (e.g., had movement while grasping the virtual object) and control the virtual object movement using outputs from the spring dynamics model. The spring dynamics model's control of the virtual object's movement can give the appearance of lag relative to the user's movements. For example, the user may pick up and move the virtual object, and the virtual object may lag (e.g., behind and/or in a rotation) relative the user's hand movements, as if the user's hand and virtual object were connected by one or more virtual springs.
    Type: Application
    Filed: December 11, 2023
    Publication date: June 27, 2024
    Applicant: Meta Platforms Technologies, LLC
    Inventors: Brandon Jacob SORG, Zhenyu XU, Martin SCHUBERT
  • Patent number: 12012377
    Abstract: The invention relates to a method for producing one or more olefins and one or more carboxylic acids, in which one or more paraffins is or are subjected to an oxidative dehydrogenation. For the oxidative dehydrogenation, a reactor (10) having a plurality of reaction zones (11, 12, 13) is used, a gas mixture comprising the one or more paraffins is successively passed through the reaction zones (11, 12, 13), and at least two of the reaction zones (11, 12, 13) are subject to varying temperature influences. The invention also relates to a corresponding system (100).
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: June 18, 2024
    Assignee: LINDE GmbH
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Florian Winkler, Desislava Tota, Hans-Jörg Zander
  • Publication number: 20240166579
    Abstract: A process for producing ethylene by oxidative dehydrogenation of ethane using a shell-and-tube reactor having reaction tubes extending between a first end and a second end includes disposing one or more catalyst beds in each of the reaction tubes. In each of the reaction tubes, a ratio of a total length of the one or more catalyst beds between the first end and the second end to a diameter of each of the reaction tubes has a value between 150 and 400. The shell-and-tube reactor is operated at a linear velocity of 250 to 800 cm/s, and the one or more catalyst beds are configured such that a ratio of active catalyst mass to effective cooling area is in a range between 1.5 and 5 kg/m2.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 23, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel
  • Publication number: 20240158322
    Abstract: A method for producing a target compound includes distributing a feed mixture at a temperature in a first temperature range to a plurality of parallel reaction tubes of a shell-and-tube reactor, and subjecting the feed mixture in first tube sections of the reaction tubes to heating to a temperature in a second temperature range and in second tube sections of the reaction tubes arranged downstream of the first tube sections to oxidative catalytic conversion using one or more catalysts. A gas mixture flowing out of the second tube sections is brought into contact in third tube sections arranged downstream of the second tube sections with a catalyst which has a volumetric activity below the highest volumetric activity of the one or the plurality of catalysts arranged in the second tube sections. A gas mixture from the third tube sections is withdrawn from the shell-and-tube reactor without further catalytic conversion.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 16, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Wolfgang Muller, Ernst Haidegger, Gerhard Mestl, Klaus Wanninger, Peter Scheck
  • Publication number: 20240150261
    Abstract: A method for producing a target compound, includes distributing feed mixture at a temperature in a first temperature range to a plurality of parallel reaction tubes of a shell-and-tube reactor. The method further includes subjecting the feed mixture in first tube sections of the reaction tubes to heating to a temperature in a second temperature range, and in second tube sections of the reaction tubes arranged downstream of the first tube sections to oxidative catalytic conversion using one or more catalysts arranged in the second tube sections. The heating is performed, at least in part, using a catalyst arranged in the first tube sections and having a light-off temperature in the first temperature range.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 9, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Wolfgang Muller, Ernst Haidegger, Gerhard Mestl, Klaus Wanninger, Peter Scheck
  • Publication number: 20240150263
    Abstract: A process for producing a target compound includes forming a feed mixture containing at least one reactant compound. The feed mixture is distributed to parallel reaction tubes of one or more shell-and-tube reactors and subjected to oxidative catalytic conversion in the reaction tubes. Steam is added to the feed mixture in an amount such that a steam fraction of the feed mixture is 5 to 95 vol %, oxygen is added to the feed mixture in the form of a fluid containing at least 95 vol % oxygen, and the oxidative catalytic conversion is carried out using one or more catalysts containing the metals molybdenum, vanadium, niobium and optionally tellurium.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 9, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Gerhard Mestl, Klaus Wanninger, Peter Scheck, Anina Wohl
  • Publication number: 20240150262
    Abstract: Producing a product hydrocarbon includes subjecting a feed mixture containing a feed hydrocarbon and oxygen to selective oxidation to obtain a product mixture containing product hydrocarbon and water. A subsequent mixture is formed from a portion of the product mixture by separating a portion of the water. Oxygen in the feed mixture is partially converted during the selective oxidation, so that the product mixture has a first residual oxygen content and the subsequent mixture has a second residual oxygen content. Detection of the first and/or the second residual oxygen content is performed using a first measuring device. A second measuring device at the end of the catalyst bed detects temperature. Using a process control and/or evaluation unit, measurement data of the first and/or second measuring device(s) are detected and are evaluated and/or processed while obtaining follow-up data. Process control is carried out on the basis of the follow-up data.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 9, 2024
    Inventors: Mathieu Zellhuber, Martin Schubert, Andreas Meiswinkel, Anina Wohl
  • Patent number: 11962351
    Abstract: A multilayer photonic device is described, including an input region configured to receive an input signal, a multilayer stack optically coupled with the input region to receive the input signal, and an output region optically coupled with the multilayer stack to output an output signal. The multilayer stack can include a first metastructured dispersive region disposed in a first patterned layer of the multilayer stack and a second metastructured dispersive region disposed in a second patterned layer of the multilayer stack and optically coupled with the first metastructured dispersive region. The first metastructured dispersive region and the second metastructured dispersive region can together structure the multilayer stack to generate the output signal in response to the input signal.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: April 16, 2024
    Assignee: X Development LLC
    Inventors: Ian Alexander Durant Williamson, Martin Schubert, Alfred Ka Chun Cheung
  • Publication number: 20240104261
    Abstract: In some embodiments, techniques for optimizing a design for a physical device to be fabricated by a fabrication system is provided. A computing system receives an initial design. The computing system simulates performance of the initial design to determine a simulated performance metric of the initial design. The computing system determines a Jacobian of the simulated performance metric of the initial design. The computing system backpropagates a gradient of the simulated performance metric of the initial design to generate an updated design. The computing system estimates performance of the updated design using the Jacobian of the simulated performance metric of the initial design to determine an estimated performance metric. The computing system backpropagates a gradient of the estimated performance metric to generate a further updated design.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 28, 2024
    Inventors: Ian Williamson, Alfred Ka Chun Cheung, Martin Schubert
  • Publication number: 20240105410
    Abstract: An optical device includes a first optically dimmable switch for providing a first transmittance while the first optically dimmable switch is in a first state and providing a second transmittance distinct from the first transmittance while the first optically dimmable switch is in a second state distinct from the first state. The optical device also includes a dynamic heat source thermally coupled with the first optically dimmable switch. The dynamic heat source is at a first temperature at a first time and is at a second temperature distinct from the first temperature at a second time mutually exclusive from the first time. The optical device may operate as an optical dimming device, which may be used in head-mounted display devices or as dimmable windows or shutters.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 28, 2024
    Inventors: Afsoon Jamali, Arman Boromand, Gareth John Valentine, Martin Schubert, Paul Murray LeFebvre, Francis Lawrence Leard, Olga Vladimirovna Barykina-Tassa
  • Publication number: 20240086593
    Abstract: In some embodiments, techniques for optimizing a design for a physical device to be fabricated by a fabrication system is provided. A computing system receives an initial design. The computing system uses a fabrication model to determine structural parameters based on the initial design, wherein using the fabrication model includes applying one or more morphological transformations to the initial design that are predicted to be introduced by the fabrication system. The computing system obtains a performance metric by simulating performance of the structural parameters. The computing system determines a loss metric based on the performance metric. The computing system backpropagates a gradient of the loss metric to generate an updated design.
    Type: Application
    Filed: August 19, 2022
    Publication date: March 14, 2024
    Inventors: Ian Williamson, Alfred Ka Chun Cheung, Martin Schubert