Patents by Inventor Martin Seamons

Martin Seamons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798820
    Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
  • Patent number: 11756796
    Abstract: A method may include providing a substrate having, on a first surface of the substrate, a low dielectric constant layer characterized by a layer thickness. The method may include heating the substrate to a substrate temperature in a range of 200° C. to 550° C.; and directing an ion implant treatment to the low dielectric constant layer, while the substrate temperature is in the range of 200° C. to 550° C. As such, the ion implant treatment may include implanting a low weight ion species, at an ion energy generating an implant depth equal to 40% to 175% of the layer thickness.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Martin Seamons, Shan Tang, Qi Gao, Deven Raj Mittal, Kyuha Shim
  • Publication number: 20230187276
    Abstract: Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 15, 2023
    Inventors: Shi YOU, He REN, Naomi YOSHIDA, Nikolaos BEKIARIS, Mehul NAIK, Jay Martin SEAMONS, Jingmei LIANG, Mei-Yee SHEK
  • Publication number: 20220367205
    Abstract: A method may include providing a substrate having, on a first surface of the substrate, a low dielectric constant layer characterized by a layer thickness. The method may include heating the substrate to a substrate temperature in a range of 200° C. to 550° C.; and directing an ion implant treatment to the low dielectric constant layer, while the substrate temperature is in the range of 200° C. to 550° C. As such, the ion implant treatment may include implanting a low weight ion species, at an ion energy generating an implant depth equal to 40% to 175% of the layer thickness.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Martin Seamons, Shan Tang, Qi Gao, Deven Raj Mittal, Kyuha Shim
  • Publication number: 20210143029
    Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 13, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
  • Publication number: 20140091417
    Abstract: A method of depositing a low refractive index coating on a photo-active feature on a substrate comprises forming a substrate having one or more photo-active features thereon and placing the substrate in a process zone. A deposition gas is energized in a remote gas energizer, the deposition gas comprising a fluorocarbon gas and an additive gas. The remotely energized deposition gas is flowed into the process zone to deposit a low refractive index coating on the substrate.
    Type: Application
    Filed: September 28, 2013
    Publication date: April 3, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Sum-Yee Betty TANG, Martin SEAMONS, Kiran V. THADANI, Abhijit MALLICK
  • Publication number: 20140091379
    Abstract: A fluorocarbon coating comprises an amorphous structure with CF2 bonds present in an atomic percentage of at least about 15%, and having a refractive index of less than about 1.4. The fluorocarbon coating can be deposited on a substrate by placing the substrate in a process zone comprising a pair of process electrodes, introducing a deposition gas comprising a fluorocarbon gas into the process zone, and forming a capacitively coupled plasma of the deposition gas by coupling energy to the process electrodes.
    Type: Application
    Filed: September 28, 2013
    Publication date: April 3, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Sum-Yee Betty TANG, Martin SEAMONS
  • Publication number: 20080084650
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 10, 2008
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Seamons, Visweswaren Sivaramakrishnan, Bok Kim, Amir Al-Bayati, Derek Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Publication number: 20060222771
    Abstract: A method is provided for forming an amorphous carbon layer, deposited on a dielectric material such as oxide, nitride, silicon carbide, carbon doped oxide, etc., or a metal layer such as tungsten, aluminum or poly-silicon. The method includes the use of chamber seasoning, variable thickness of seasoning film, wider spacing, variable process gas flows, post-deposition purge with inert gas, and post-deposition plasma purge, among others, to make the deposition of an amorphous carbon film at low deposition temperatures possible without any defects or particle contamination.
    Type: Application
    Filed: June 16, 2006
    Publication date: October 5, 2006
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Heraldo Botelho
  • Publication number: 20060162661
    Abstract: A dual channel gas distributor can simultaneously distribute plasma species of an first process gas and a non-plasma second process gas into a process zone of a substrate processing chamber. The gas distributor has a localized plasma box with a first inlet to receive a first process gas, and opposing top and bottom plates that are capable of being electrically biased relative to one another to define a localized plasma zone in which a plasma of the first process gas can be formed. The top plate has a plurality of spaced apart gas spreading holes to spread the first process gas across the localized plasma zone, and the bottom plate has a plurality of first outlets to distribute plasma species of the plasma of the first process gas into the process zone. A plasma isolated gas feed has a second inlet to receive the second process gas and a plurality of second outlets to pass the second process gas into the process zone.
    Type: Application
    Filed: January 22, 2005
    Publication date: July 27, 2006
    Inventors: Kee Jung, Dale Du Bois, Lun Tsuei, Lihua Huang, Martin Seamons, Soovo Sen, Reza Arghavani, Michael Kwan
  • Publication number: 20060105106
    Abstract: A stressed film is formed on a substrate. The substrate is placed in a process zone and a plasma is formed of a process gas provided in the process zone, the process gas having silicon-containing gas and nitrogen-containing gas. A diluent gas such as nitrogen can also be added. The as-deposited stressed material can be exposed to ultraviolet radiation or electron beams to increase the stress value of the deposited material. In addition or in the alternative, a nitrogen plasma treatment can be used to increase the stress value of the material during deposition. Pulsed plasma methods to deposit stressed materials are also described.
    Type: Application
    Filed: February 11, 2005
    Publication date: May 18, 2006
    Inventors: Mihaela Balseanu, Kee Jung, Lihua Huang, Li-Qun Xia, Rongping Wang, Derek Witty, Lewis Stern, Martin Seamons, Hichem M'Saad, Michael Kwan
  • Publication number: 20060014397
    Abstract: A method is provided for forming an amorphous carbon layer, deposited on a dielectric material such as oxide, nitride, silicon carbide, carbon doped oxide, etc., or a metal layer such as tungsten, aluminum or poly-silicon. The method includes the use of chamber seasoning, variable thickness of seasoning film, wider spacing, variable process gas flows, post-deposition purge with inert gas, and post-deposition plasma purge, among others, to make the deposition of an amorphous carbon film at low deposition temperatures possible without any defects or particle contamination.
    Type: Application
    Filed: July 13, 2004
    Publication date: January 19, 2006
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Heraldo Botelho
  • Publication number: 20050287771
    Abstract: Methods are provided for depositing amorphous carbon materials. In one aspect, the invention provides a method for processing a substrate including positioning the substrate in a processing chamber, introducing a processing gas into the processing chamber, wherein the processing gas comprises a carrier gas, hydrogen, and one or more precursor compounds, generating a plasma of the processing gas by applying power from a dual-frequency RF source, and depositing an amorphous carbon layer on the substrate.
    Type: Application
    Filed: February 24, 2005
    Publication date: December 29, 2005
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Deenesh Padhi, Andy Luan, Sum-Yee Tang, Priya Kulkarni, Visweswaren Sivaramakrishnan, Bok Kim, Hichem M'Saad, Yuxiang Wang, Michael Kwan
  • Publication number: 20050170104
    Abstract: We have discovered that is possible to tune the stress of a single-layer silicon nitride film by manipulating certain film deposition parameters. These parameters include: use of multiple (typically dual) power input sources operating within different frequency ranges; the deposition temperature; the process chamber pressure; and the composition of the deposition source gas. In particular, we have found that it is possible to produce a single-layer, thin (300 ? to 1000 ? thickness) silicon nitride film having a stress tuned to be within the range of about ?1.4 GPa (compressive) to about +1.5 GPa (tensile) by depositing the film by PECVD, in a single deposition step, at a substrate temperature within the range of about 375° C. to about 525 ° C., and over a process chamber pressure ranging from about 2 Torr to about 15 Torr.
    Type: Application
    Filed: January 29, 2004
    Publication date: August 4, 2005
    Inventors: KeeBum Jung, Sum-Yee Tang, Martin Seamons, Reza Arghavani, Eller Juco
  • Publication number: 20050150452
    Abstract: The present invention provides a process kit for a semiconductor processing chamber. The processing chamber is a vacuum processing chamber that includes a chamber body defining an interior processing region. The processing region receives a substrate for processing, and also supports equipment pieces of the process kit. The process kit includes a pumping liner configured to be placed within the processing region of the processing chamber, and a C-channel liner configured to be placed along an outer diameter of the pumping liner. The pumping liner and the C-channel liner have novel interlocking features designed to inhibit parasitic pumping of processing or cleaning gases from the processing region. The invention further provides a semiconductor processing chamber having an improved process kit, such as the kit described. In one arrangement, the chamber is a tandem processing chamber.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 14, 2005
    Inventors: Soovo Sen, Mark Fodor, Martin Seamons, Priya Kulkarni, Visweswaren Sivaramakrishnan, Sudha Rathi, Tsutomu Shimayama, Thomas Nowak, Wendy Yeh
  • Patent number: 6868856
    Abstract: Methods and apparatus for cleaning semiconductor processing equipment. The apparatus include both local and remote gas dissociators coupled to a semiconductor processing chamber to be cleaned. The methods include introducing a precursor gas into the remote dissociator where the gas is dissociated and introducing a portion of the dissociated gas into the chamber. Another portion of the dissociated gas which re-associates before introduction into the chamber is also introduced into the chamber where it is again dissociated. The dissociated gas combines with contaminants in the chamber and is exhausted from the chamber along with the contaminants.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: March 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Thomas Nowak, Ian Latchford, Tsutomu Tanaka, Bok Heon Kim, Ping Xu, Jason Foster, Heath B. DeShong, Martin Seamons
  • Patent number: 6843881
    Abstract: In a substrate processing apparatus, a substrate processing chamber has a substrate support to support a substrate, a gas delivery system to provide an energized cleaning gas to the chamber to clean process residues formed on surfaces in the chamber during processing of the substrate, and an exhaust to exhaust the cleaning gas. A detector monitors a chemiluminescent radiation emitted from about a surface during cleaning of the process residues by the energized cleaning gas and generates a signal in relation to the monitored chemiluminescent radiation. A controller receives the signal and evaluates the signal to determine an endpoint of the cleaning process.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: January 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Nam Le, Martin Seamons, Ameeta Madhava, Michael P. Nault, Thomas Nowak, Tsutomu Tanaka, Moshe Sarfaty
  • Publication number: 20030185966
    Abstract: In a substrate processing apparatus, a substrate processing chamber has a substrate support to support a substrate, a gas delivery system to provide an energized cleaning gas to the chamber to clean process residues formed on surfaces in the chamber during processing of the substrate, and an exhaust to exhaust the cleaning gas. A detector monitors a chemiluminescent radiation emitted from about a surface during cleaning of the process residues by the energized cleaning gas and generates a signal in relation to the monitored chemiluminescent radiation. A controller receives the signal and evaluates the signal to determine an endpoint of the cleaning process.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Nam Le, Martin Seamons, Ameeta Madhava, Michael P. Nault, Thomas Nowak, Tsutomu Tanaka, Moshe Sarfaty
  • Publication number: 20030010355
    Abstract: Methods and apparatus for cleaning semiconductor processing equipment. The apparatus include both local and remote gas dissociators coupled to a semiconductor processing chamber to be cleaned. The methods include introducing a precursor gas into the remote dissociator where the gas is dissociated and introducing a portion of the dissociated gas into the chamber. Another portion of the dissociated gas which re-associates before introduction into the chamber is also introduced into the chamber where it is again dissociated. The dissociated gas combines with contaminants in the chamber and is exhausted from the chamber along with the contaminants.
    Type: Application
    Filed: July 13, 2001
    Publication date: January 16, 2003
    Applicant: Applied Materials, Inc
    Inventors: Thomas Nowak, Ian Latchford, Tsutomu Tanaka, Bok H. Kim, Ping Xu, Jason Foster, Heath B. DeShong, Martin Seamons
  • Patent number: 6413321
    Abstract: Backside particle contamination of semiconductor wafers subjected to chemical vapor deposition is significantly reduced by optimizing various process parameters, alone or in combination. A high quality oxide seasoning layer is deposited to improve adhesion and trapping of contaminants remaining after a prior chamber cleaning step. Second, wafer pre-heating reduces thermal stress on the wafer during physical contact between the wafer and heater. Third, the duration of the gas stabilization flow of thermally reactive process gas species prior to CVD reaction is reduced, thereby preventing side products produced during this stabilization flow from affecting the wafer backside. Fourth, the wafer heater is redesigned to minimize physical contact between the heater surface and the wafer backside.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Mario Dave Silvetti, Ameeta Madhava, Davood Khalili, Martin Seamons, Emanuele Cappello, Nam Le, Lloyd Berken