Patents by Inventor Martin Sedén

Martin Sedén has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220040755
    Abstract: An arrangement for controlling flow speed in a mold for continuous casting of metal includes: at least two first front cores with associated first magnetic coils arranged on one side of the mold; at least two second front cores with associated second magnetic coils arranged on an opposite side of the mold in substantial alignment with the first front cores; an external magnetic loop connecting the second front cores to the first front cores, to allow a one-directional magnetic flux to pass through the mold from the first front cores to the second front cores or vice versa; and a control interface enabling independent control of two subsets of the first magnetic coils.
    Type: Application
    Filed: January 27, 2020
    Publication date: February 10, 2022
    Inventors: Hongliang Yang, Martin Sedén, Nils Peter Jacobson, Anders Lehman
  • Patent number: 10974314
    Abstract: A method of determining a temperature distribution in a mold plate of a mold for a metal-making process, wherein the method includes: obtaining a temperature value from each of a plurality of temperature sensors arranged in the mold plate, each temperature sensor being spaced apart from a respective reference point in the mold plate, determining for each temperature value a reference point temperature value at the corresponding reference point using either a respective linear function or a respective non-linear function, wherein a correction factor and correction term of the linear function or a set of parameters in a general non-linear formulation of the non-linear function is obtained from a plurality of initial temperature relationships, wherein each initial temperature relationship is between a simulated temperature at the corresponding temperature sensor in the mold plate and a simulated temperature at the corresponding reference point in the mold plate, each simulated temperature being obtained based on
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: April 13, 2021
    Assignee: ABB Schweiz AG
    Inventor: Martin Sedén
  • Publication number: 20210039159
    Abstract: A method of determining a temperature distribution in a mold plate of a mold for a metal-making process, wherein the method includes: obtaining a temperature value from each of a plurality of temperature sensors arranged in the mold plate, each temperature sensor being spaced apart from a respective reference point in the mold plate, determining for each temperature value a reference point temperature value at the corresponding reference point using either a respective linear function or a respective non-linear function, wherein a correction factor and correction term of the linear function or a set of parameters in a general non-linear formulation of the non-linear function is obtained from a plurality of initial temperature relationships, wherein each initial temperature relationship is between a simulated temperature at the corresponding temperature sensor in the mold plate and a simulated temperature at the corresponding reference point in the mold plate, each simulated temperature being obtained based on
    Type: Application
    Filed: March 12, 2018
    Publication date: February 11, 2021
    Applicant: ABB Schweiz AG
    Inventor: Martin Sedén
  • Publication number: 20190168293
    Abstract: A casting mold including a copper plate and a plurality of optical fibers, having a plurality of temperature measuring points for the copper plate while casting. Molten metal is cast into the mold along an axis of, the optical fibers built-in the plate. A method for detecting temperature distribution of a molten metal in a casting mold having at least one copper plate, including determining by calculation or measurement an ideal molten flow of the metal, building-in a plurality of optical fibers into the copper plate based on flow, arranging the optical fibers inside at least the upper part of the copper plate, receiving the measurements of temperatures, and comparing the measurements of temperatures with a calculated/measured distribution of an ideal molten flow.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Conny Svahn, Jan-Erik Eriksson, Martin Sedén
  • Patent number: 10232433
    Abstract: A casting mold including a copper plate and a plurality of optical fibers, having a plurality of temperature measuring points for the copper plate while casting. Molten metal is cast into the mold along an axis of, the optical fibers built-in the plate. A method for detecting temperature distribution of a molten metal in a casting mold having at least one copper plate, including determining by calculation or measurement an ideal molten flow of the metal, building-in a plurality of optical fibers into the copper plate based on flow, arranging the optical fibers inside at least the upper part of the copper plate, receiving the measurements of temperatures, and comparing the measurements of temperatures with a calculated/measured distribution of an ideal molten flow.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: March 19, 2019
    Assignee: ABB Schweiz AG
    Inventors: Conny Svahn, Jan-Erik Eriksson, Martin Sedén
  • Patent number: 10207318
    Abstract: A method of controlling molten metal flow and an electromagnetic brake system for a metal-making process, including: a first magnetic core arrangement having a first and second long sides with Nc teeth, and arranged to be mounted to opposite longitudinal sides of an upper portion of a mould, a first set of coils, each being wound around a respective tooth of the first magnetic core arrangement, and Np power converters, with Np being an integer that is at least two and Nc is an integer that is at least four and evenly divisible with Np, wherein each power converter is configured to feed a DC current to its respective group of 2Nc/Np series-connected coils.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: February 19, 2019
    Assignee: ABB Schweiz AG
    Inventors: Anders Lehman, Jan-Erik Eriksson, Martin Sedén
  • Publication number: 20180214937
    Abstract: A casting mold including a copper plate and a plurality of optical fibers, having a plurality of temperature measuring points for the copper plate while casting. Molten metal is cast into the mold along an axis of, the optical fibers built-in the plate. A method for detecting temperature distribution of a molten metal in a casting mold having at least one copper plate, including determining by calculation or measurement an ideal molten flow of the metal, building-in a plurality of optical fibers into the copper plate based on flow, arranging the optical fibers inside at least the upper part of the copper plate, receiving the measurements of temperatures, and comparing the measurements of temperatures with a calculated/measured distribution of an ideal molten flow.
    Type: Application
    Filed: June 28, 2016
    Publication date: August 2, 2018
    Inventors: Conny SVAHN, Jan-Erik ERIKSSON, Martin SEDÉN
  • Publication number: 20170216909
    Abstract: A method of controlling molten metal flow and an electromagnetic brake system for a metal-making process, including: a first magnetic core arrangement having a first and second long sides with Nc teeth, and arranged to be mounted to opposite longitudinal sides of an upper portion of a mould, a first set of coils, each being wound around a respective tooth of the first magnetic core arrangement, and Np power converters, with Np being an integer that is at least two and Nc is an integer that is at least four and evenly divisible with Np, wherein each power converter is configured to feed a DC current to its respective group of 2Nc/Np series-connected coils.
    Type: Application
    Filed: November 20, 2014
    Publication date: August 3, 2017
    Inventors: Anders Lehman, Jan-Erik Eriksson, Martin Sedén